Recherche
Je travaille actuellement au sein de l'IMATH dirigé par Cédric Galusinski, dans l'équipe IAA (Informatique et Algèbre Appliquées) animée par Yves Aubry. Mon travail de recherche est principalement centré sur l'étude des fonctions booléennes
Articles dans des revues internationales
P. Langevin, J.-P. Zanotti, "Finite Groups and Highly Non-Linear Boolean Functions", Designs Codes and Cryptography, vol. 36, #2 pp. 131-146, 2005.
Abstract:
One of the hardest problems in coding theory is to evaluate the covering radius of first order Reed-Muller codes RM(1,m), and more recently the balanced covering radius for crypto graphical purposes. The aim of this paper is to present some new results on this subject. We mainly study boolean functions invariant under the action of some finite groups, following the idea of Patterson and Wiedemann [The covering radius of the (1, 15) Reed-Muller Code is atleast 16276. IEEE Trans Inform Theory. Vol. 29 (1983) 354.]. Our method is Fourier transforms and our results are both theoretical and numerical
Keywords: Non-linearity, finite groups, characters, Fourier transforms, Reed-Muller codes, boolean functions, covering radius, cryptography.
J.-P. Zanotti, "Automorphism Groups of BWD Codes", Journal of Combinatorial Theory (series A), vol. 78, no. 2, pp 303-308, 1997.
Abstract: In this paper we characterize the automorphism
group of a particular class of irreducible cyclic codes by means of an
important theorem of Carlitz and McConnel. The BWD-codes (Balanced Weight
Distribution) have been introduced in a previous paper and have the remarkable
property that each non-zero weight appears with the same multiplicity.
We show that an irreducible cyclic BWD-code with N non-zero weights
defines an association scheme with N classes. We study such a code
from two different point of vue: the code as a K-subspace of Kn where K is a finite field, and the code through an extension [L : K] isomorphic to the code C. From the first one, the code is a subscheme of the Hamming scheme and from the second one, it is a cyclotomic scheme.
Keywords: Automorphism group, BWD-codes, cyclotomic
schemes, Hamming schemes, irreducible cyclic codes.
J.-P. Zanotti, "Weight Behavior of Irreducible Cyclic BWD-Codes", Finite Fields and Their Applications, vol. 2, no. 2, pp. 192-203, 1996.
Abstract: In a previous paper, we have introduced
a new class of codes called BWD-codes, with a remarkable property, their
weight distribution is balanced, i.e. there are the same number of codewords
for each non-zero weight. The aim of this paper is to study the weights
of such codes in the irreducible cyclic case. First we recall the fundamental
property of BWD-codes and we start this study from a deep link between
weights and Gauss sums. We see that this particular situation is, roughly
speaking, at the opposite of those studied by McEliece. We give the weights
for the two-weight case, and we show that the weights of any
N-weight
BWD-code defined over
Fq is completely determined by the
N-weights
of a BWD-code of dimension
N defined over the
Fp. The main result concerns the asymptotic behavior of Gauss sums over the prime field
Fp, by means of a nice technique introduced by Rodier.
Keywords: BWD-codes, irreducible cyclic codes,
Gauss sums, Fourier transform, trace function, cyclotomic fields, Ax's
theorem, Kronecker's theorem, Stickelberger's theorem, Weil-Serre's bound.
P. Langevin, J.-P. Zanotti, "Linear Codes With Balanced Weight Distribution" , Applicable Algebra in Engineering, Communication and Computing vol. 6, no. 4/5, pp. 299-307, 1995.
Abstract: A In this paper, we study particular
linear codes defined over Fq, with an astonishing property, their weight distribution is balanced, i.e. there is the same number of
codewords for each nonzero weight of the code. We call these codes BWD-codes. We first study BWD-codes by means of the Pless identities and we completely characterize the two-weight projective case. We study the class of codes
defined under subgroups of the multiplicative group of Fqs using Gauss sums. Then, given a prime p and an integer N dividing p - 1, we construct all the N-weight BWD-codes of that class. We conclude this paper by some tables of BWD-codes and an open
problem.
Keywords: BWD-codes, codes under groups, Gauss
sums, irreducible cyclic codes, trace function, transposed codes.
Articles dans des actes de colloques internationaux
P. Langevin, P. Rabizzoni, P. Véron, J.-P. Zanotti, "On the Number of Bent Functions in 8 Variables", International Workshop on Boolean Functions : Cryptography and Applications, Rouen. pp. 125-135, 2006.
Abstract:In this paper we give a new upper bound on the number of bent functions in 8 variables which is at most 2129.2. First, and this is the main work in this paper, we find a partial classification of quartic forms in 8 variables under the action of GL(8,2), the general linear group over F2. Once this partial classification is obtained, we are able to estimate the number of possible lower degree terms we can add to each representative by means of equations over their binary coefficients.
Keywords: Bent functions in 8 variables, Reed-Muller codes, cryptography, Schreier trees, orbits, general linear group, stabilizers, homogeneous polynomials, compound matrices.
P. Langevin, J.-P. Zanotti, "Around the counter example of Patterson and Wiedemann", Finite Fields and their Applications, Fq6. pp. 214-229, 2002.
Abstract: Following Patterson and Wiedemann, we find counterexamples for a conjecture of Mykkelveit related to the covering radius of the first order Reed-Muller code. One of them has a remarkable algebraic structure.
Keywords: Frobenius, Reed-Muller codes, covering radius. Walsh transform.
Rapports de recherche
J.-P. Zanotti, "Codage d'un Signal Audionumérique
sur un support à lecture optique", Rapport de Recherche, INRIA, 3333, 1998.
Résumé: L'objet de cet article est d'étudier les différentes techniques de codage qui entrent en jeu dans la réalisation du disque compact, codage à l'enregistrement et codage correcteur.
Mots Clefs: Disque compact, Code EFM, Code CIRC,
codes de Reed-Solomon.
P. Langevin, P. Véron, J.-P. Zanotti, "Fonctions booléennes équilibrées II" , Rapport de recherche. Contrat de recherche SCSSI (Services Centraux de Sécurité des Systèmes d'Information), pp. 1-61, 1998.
Abstract: Theoretical study of highly
non-linear boolean functions, and balanced highly non-linear functions.
P. Langevin, J.-P. Zanotti, "Fonctions booléennes équilibrées I" , Rapport de recherche, Contrat de recherche SCSSI (Services Centraux de Sécurité
des Systèmes d'Information), diffusion restreinte, pp. 1-54, 1996.
Abstract: Theoretical study of highly non-linear boolean functions, and balanced highly non-linear functions.
Autres
J.-P. Zanotti, "Codes à distribution
de poids équilibrée", Thèse de doctorat, spécialité mathématiques, Université de Toulon et du Var, 1995.
Résumé: Nous étudions principalement une nouvelle famille de codes cycliques irréductibles possédant une propriété remarquable, leur distribution de poids est équilibrée (codes BWD, Balanced Weight Distribution). Nous caractérisons ces codes et nous montrons que leurs poids ne dépendent que de sommes de Gauss évaluées en des caractères d'un groupe particulier. Nous étudions aussi leurs propriétés combinatoires remarquables, notamment nous montrons que ces codes définissent des schémas d'association cyclotomiques. Une étude spécifique des sommes de Gauss nous permet de calculer les poids sur toute extension de Fq à partir de la connaissance des poids du plus petit code sur le corps premier Fp. Nous explicitons aussi
le comportement asymptotique des poids au regard de la borne de Weil-Serre
dans ce sens où ces poids sont liés aux nombres de points
rationnels de certaines courbes d'Artin-Schreier.
Mots Clefs: Formes coordonnées, codes C(f), codes cycliques irréductibles, distribution de poids, codes BWD, sommes de caractères, sommes de Gauss, transformée de
Fourier, schémas d'association cyclotomiques, courbes d'Artin-Schreier,
borne de Weil-Serre.
Abstract: We study a new class of irreducible cyclic codes with a remarkable property, their weight distribution is balanced
(BWD-codes). We characterize these codes and we show that their weights
depend only on certain Gauss-sums for characters defined over a particular
group. We also study their remarkable combinatorial properties, especially,
we show that these codes define cyclotomic association schemes. A specific
study of related Gauss-sums allows us to compute the weights on any extension
of Fq with the knowledge of the weights of the smallest code defined over the prime field Fp. We characterize the asymptotic behavior of weights compared to the Weil-Serre bound, in that sense the weights are related to the numbers of rational points of some Artin-Schreier
curves.
Keywords: Coordinate forms,codes C( f
),
irreducible cyclic codes, weight distribution, BWD-codes, character sums,
Gauss sums, Fourier transform, cyclotomic association schemes, Artin-Schreier
curves, Weil-Serre bound.