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Introduction

Recently, in the solution of problems connected with computational

practice, a number of authors (N.S. Bakhvalov, A.G. Vitushkin, N.M. Korobov,

S.L. Sobolev and others) have raised the question of algorithms that are

not only convenient but also, in some sense, optimal. Naturally, the solu-

tion of this problem begins with the simplest cases. The computation

of values of polynomials - one of the most prevailing mass operations in

practical computation - gives examples of such problems and here it is

possible to find optimal algorithms. In this case, in spite of the sim-

plicity in formulating the results, it is usually necessary to use diverse

and difficult methods in the construction of optimal algorithms and in the

proofs that they cannot be improved. This survey is devoted to an ex-

position of these results and basic methods.

I· Let P
n
(x) = <XoX

n
 + o^""

1
 + ... + a

n
 be a polynomial. We are

required to calculate its value at the point χ - x
0
. The simplest method

consists in systematically raising XQ to second and third etc., finally

to the n-th power, then multiplying XQ" by α& and adding everything. Thus,

η additions and 2n - 1 multiplications are carried out.

However, there are more economical methods of computing P
n
(x

0
). There

is, for example, the well-known "Homer's scheme" by which the value of
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a polynomial can be computed in η multiplications and η additions. This
scheme is based on the identity

We now raise the question: is it possible to improve this scheme of com-

putation, by diminishing the number of additions or multiplications or

both in comparison with Homer' s method? This question demands a more

exact statement of the problem. We must describe precisely what we mean by

the word " scheme " .

Henceforth we denote any arithmetical operation by the symbol o:

addition, subtraction, multiplication or division. We denote additions and

subtractions by the further symbol ± and multiplications and divisions by

the symbol x. Finally, in accordance with established terminology we call

the set of operations

Pi
=R\

a
Rl (i = i, 2, . ... m), (0.1)

p
m
 = P

n
(x), (0.2)

where each Й; and R'l is either the variable x, or 4 , 0 4 k 4 n, or an
absolute constant independent of x, o

o
, a

lt
 ..., a

n
 or pj(j < i), leading

to the identity (0.2) in x, OQ, a
l f
 ..., a

n
 a scheme without initial con-

ditioning of the coefficients.

Both methods of computing Ρ
η
(*ο) indicated above are obviously schemes

in this sense.

In §1 of the present paper (Theorem 1.1) we show that every scheme
(0.1) contains at least η operations ± and at least η operations χ.

Thus, Homer's method cannot be improved for the class of all poly-
nomials. Naturally this result does not exclude that there are polynomials
"easier" to compute for which we shall devise "individual" computing
schemes,

1
 more economical than Horner's method.

For example, the computation of the polynomial

x
le
 - 1

x
15
 + x

1 4
 + ... + 1 = — = P(x) requires only four operations of

multiplication and one of division, i.e. 5 operations χ instead of 15 as

in Horner's method:

p
&
 = x—\, p

e
 = p

i
 — ί = χ

1β
 — Ι, Ρτ = ρ

β
:ρ

5
 = Ρ(χ).

However, as will be shown in §1, for any n, the set of all "easy"

polynomials of degree η is not dense in the space of all polynomials of

degree not greater than η and has zero measure in it.

2. Sometimes in computational practice we repeatedly have to compute

values of the same polynomial at different points (for example, the prob-

lem of computing sin χ and other elementary functions). Then it is natural

Absolute coefficients must not appear in " individual " schemes without
initial conditioning of the coefficients, since in this case they could be
functions of the coefficients of the polynomial being computed, i.e. we would
have a scheme with initial conditioning of the coefficients (see below).
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first to try and condition the coefficients, i.e. to manipulate (once) the
coefficients of the polynomial so that the derived scheme with resulting
functions of the coefficients contains as few arithmetical operations as
possible.

We illustrate this idea by a very simple example due to Todd. We make
use of the identity

а
о
х* л-

 ul
x

3
 + a

2
x
2
 -)- a

3
x + a

A
 = a

0
 {(χ (χ + λ

4
) -f Λ

2
) (χ (χ + λ^ -f χ + λ

3
) + λ

4
} =

= α
0
χ

4
 + α

0
 (2λ

1
 + 1) χ

3
 + α

0
 (λ

2
 f λ

3
 + li (λι + 1))

 χ
* +

(0.3)

Equating coefficients of corresponding powers of χ and solving the result-

ing equations, we obtain:

Thus, if we first compute Xj (i = 1, 2, 3, 4), then the remaining com-

putations can be carried out by the scheme (see (0.3)):

ι — a
0
 χ p

7
. J

The scheme (0.4) contains in all 3 multiplications (and not 4, as there
would be in the standard Horner' s method) and five additions. §§2, 3 and 4
will be concerned with schemes with initial conditioning of the
coefficients.

The fundamental result of §2 (Theorem 2.1) establishes that every
scheme with initial conditioning of the coefficients contains at least η

operations ± and for η ̂, 2 at least - ^ - 1 + 1 operations χ (the remarks

made above about " individual " schemes and about " easy " polynomials
hold here too, but it is not necessary to prohibit operations on constants).

Putting η = 4 we find that there must be 4 operations ± and 3 opera-
tions % so that Todd's scheme is best possible in the multiplicative sense
and almost best possible in the additive sense. §3 and §4 deal with the
construction of optimal schemes of computation with initial conditioning
of the coefficients. There, in particular, we have the following result
(Theorem 3.2): there exists a scheme, suitable for the computation of any
polynomial of degree η with complex coefficients, in which the lower bounds
of Theorem 2.1 for the number of operations are attained to within one
addition (for η = 2r):

Po~ 1,

Pi = (P
Z
 + λ

2
) (p

2
 + ζ + λ

3
) + λ

4)

Ρη(ζ) = [

λ
2 8 + 2

 (*--=2, 3, ...,r — 1 ) , '

for n = 2r,

in for га = 2/4
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For polynomials of odd degree an even better scheme can be constructed

p
o
--=zx z = z

2
,

Pi=z + K
u

Ρ
2
β

+
ι=-ρ

ζ
*-ΛΡο + λ

25
) + λ

2ε+1
 (*=1, 2, ...,r),

Here, in both schemes (0.5) and (0.6), the functions Xj = X^ (OQ a
n
)

turn out, in general, to be complex for real a
0
, a

lf
 ..., a

n
. The following

scheme avoids this defect:
2 ' ι

PQ =
I
 x · χ = χ , ̂ ?

0
 = PQ -j- χ,

P4S) = (P'o + λ4ί_2) (po + λ45_!) + λ4β)

P4S+1 = PiS-зРк + λ 4 ί + 1 ?

P',h+3 ~ Pih+1 (Po ~\~ r^ik+2) ~Ь ^ 4 А + З ,

г=о an for ra = 4.

(0.7)

The identity at the end is valid for the whole domain of the variables
x, OQ, a

u
 ..., a

n
. The functions Xj = λ{ (α

0
, ..., a

n
) are real, continuous

and piecewise analytic. The stability of (0.7) for small perturbations of

the coefficients follows from the continuity and the piecewise analyticity

of the Xjj all the remaining schemes in §§3 and 4 are stable in this sense.

The number of operations ± in (0.7) is η + 1, the number of operations

% is „ so that, to within one operation ± and one operation ̂ , this

scheme is optimal for even n.

3. §4 is devoted to schemes suitable for simultaneous computation of

several polynomials. Such cases sometimes occur in computational practice,

e.g. in the simultaneous computation of sin χ and cos x. Initial condition-

ing of the coefficients is, of course, useful in schemes of this kind, but

an extra effect of diminishing the number of operations is also possible,

as one set of intermediate calculations can be used for several polynomials.

We take an example. Values of pairs of polynomials

P(x) = UQX2 + a
t
x + a

2
 and Q(x) = b

Q
x

3
 + b^x

2
 + b

2
x + Ь

3
; α

0
 4 0, b

0
 4 0

can be computed by the scheme

p0 = χ (χ Ϊ- J ) , P(x) = aoPo + a2, Q(x) = b0{(x + Xt) (p0 + λ2) + λ3},

. __ Ь4 a, . b2 » aj . b3 . .
Λ ι " ^ - ^ Λ 2 " ^ - λ ^ λ ^

where four multiplications and five additions are used (if the operations

for the initial computing of the values X
l f
 λ

2
, λ

3
, _i are not counted).

<*o

If we were to compute the polynomials separately, then by Theorem (2.1)

we should need at least five additions and five multiplications.

4. We give some historical notes. The ideas in this article arose in

a research students' seminar run by A.G. Vitushkin and V.D. Erokhin.
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Essentially, the first results were established in a paper by

Ostrowski [l], where the optimality of Horner's method was proved for

polynomials of degrees η = 1, 2, 3, 4 under the additional condition that

the scheme avoids division, and also by Motzkin [2] and Todd [3], where

the ideas of conditioning the coefficients (Motzkin) and economical com-

puting schemes for η = 4, (Todd) were proposed.

Theorem (1.1) was proved by Belaga [4], [δ] for the operations ± and

by the author for the operations χ.

Theorem (2.1) was proved by Belaga [4], [δ].

A generalisation of Todd' s construction for arbitrary η (Theorem 3.2)

was proposed by Belaga. Scheme (0.6) for polynomials of odd degrees and

scheme (0.7) are due to the author; the latter was anticipated in a paper

by Yu.L. Ketkov, where approximately 3n/4 multiplications were needed (and

not 1 —2— I '
 a s
 *

n
 scheme (0.6)). The results of §4 are all due to the

author. In the present survey some schemes (e.g. the schemes in §4), not

discussed either in previously published articles [б]-[э] or in the
reference book [ίο], are published for the first time. The text contains
a number of acknowledgments and references. In conclusion I wish to take

the opportunity to express my gratitude to A.G. Vitushkin and V.D. Erokhin

who proposed these problems, and also to thank L.A. Lyusternik for his

valuable advice in writing this survey, to 0.B. Lupanov and B.M. Tikhomirov

for active assistance in preparing the text and improving the presentation

of §3, and the introduction and §1.

§1. Lower bounds for the number of operations in schemes

without initial conditioning of the coefficients

T H E O R E M 1.1. Any scheme without initial conditioning of coeffi-

cients has at least η operations £ and at least η operations ±.

1) We shall prove the theorem for the operations *. The proof for the

operations ± can be established similarly. The result for ± was obtained

by Belaga for schemes more general then (0.1).

2) We make some preliminary remarks.

We denote by E
o
 the (n + 1)-dimensional linear space of coefficients

L(ao, .... o
n
) = a. The non-zero linear functionals F((t) on E

o
 are called

additive parameters. The sets E
q
(t) = E

q
(Fi + Ri) = E

q
(Fi. + Ri F

q
 + R

q
),

given by the q equations

^(а) + Я
г
(*) = 0 (i = l, 2 q),

where the Fi(<£) (i = 1, .... g) are additive parameters and the Ri(t)
(t = 1, 2 q) are rational functions of t with numerical coefficients,
are called parametric sats. In the definition of parametric set we use the
parameter t, which must not be confused with additive parameters. We say
that the additive parameter F(ct) is a constant on the parametric set
Eq(t) •= Eq(Fi + RO if
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i.e. if F(oi) is constant on E
q
 for any fixed value of t.

D E F I N I T I O N 1.1. We say that the operation >: used in the equation

ρ = R' χ R" is active on the parametric set E(t) С Е
о
 if:

1) at least one of the functions R' or R" is not a rational function

of t and χ on E(t) with numerical coefficients;

2) the result of ρ applications of the given operation is not

proportional to R' nor to R".

For example: Ofe · χ or a^ · a
s
 are active on E

o
; χ · χ = χ

2
, 2α^ are not

active on E
o
; in general, as is easily seen, the common form of a rational

function of α and χ on the parametric set E(t) C_E
0
, not containing an

operation χ active on E(t), obtained from a scheme of the form (0.1) is

F(OL) + R(x; t), where F(OL) is an additive parameter or zero and R(x; t) is

a rational function of χ and t with coefficients independent of a.

NOTE 1.1. If E
2
 С Ε χ and the operation у is active on E

2
, then it is active

on Ε χ. The converse is not always true.

We pass on to the proof of the theorem. Put t = x.

Let ρ ι
χ
 - рг

1
(а, χ) = R'^ χ R^ be the first operation χ in the scheme

(0.1) active on E
o
.

It follows from what was said above that

ph (a, x) = R'tl χ R'h = (F' + R' (χ)) χ {F" + R" (x)) =

+ R'(x)) x
where R'(x), R"(x) are independent of α on E

o
, each of F' = F(R'i

1
) and

F" = Fffi'iJ is an additive parameter or constant on E
o
, and where at least

one of F', F" is not a constant.

If F" is not constant, we define the parametric set Ε χ by the relation

where Fx(<X) = F", Rx(x) = R"(x); we choose the constant β
χ
 so that no

function p
s
(O, x) (s = 1, 2 m) is identically zero on Εχ if

p
s
(OL, x) 4 0 on Se-

lf F" is a constant, then we proceed in a similar fashion putting

Fx(a) = F', Rx(x) = R'(x).

Hence Ex(t) = Ex(Fx + βχ + R
t
) is a set given by the equation

where

if ΡΦΐχ) is
 n
°t constant on E

o
,

if Fii?'^) is constant on E
o
,

ρ _ ί

η _ ί йг
±
 - Fj if F(fij

1
) is not constant on E

o
,

ч .
if F(Ri ) is constant on i?0»



Methods of computing values of polynomials 111

and βχ is chosen so that no function ps((X, x) (s = 1, 2 m) i s
identically zero on Е г if ps 4 0 on £ 0 ·

We deduce that
aa) the Ζi-th operation χ is not active on Elt because p ^ is pro-

portional on Е г either to R"it or R\1 or l/fi'^, where in the last case, as
is evident from the construction of Eit R'l = Rx{x) is independent of a;

bi) there is a linear functional F^ct) = F{pir) such that

^(Pli.) ~ Pli i s independent of α on Z?1#

Let the Z2-th operation be the f irst * in the scheme (0.1) that is
active on Et. It follows from Note (1.1) that Z2 > lx.

In the same way as before we construct the set

where

Fffil
u
) if F(Ri

2
) is not constant on E

lt

F(R\
2
) if F(R"i

2
) is constant on E

it

=
[ Л'г

2
 - F

2
 if F(jR'i

2
) is not constant on E

lt

I R
$
i
2
 - F

2
 if F(i?'|

2
) is constant on E

u

and β
2
 is chosen so that no function p

s
(0i, x) (s = 1, 2, ..., m) is

identically zero on F,
2
 if p

s
 ̂  0 on E

o
.

We deduce similarly that:

a
2
) there is no operation χ active on F,

2
 in the first Z

2
 operations;

b
2
) there are linear functionals F

s
(a) = F(p

s
) such that F(p

s
) - p

s
,

for s < Z
2
, are equal on £

2
 to rational functions of χ with numerical

coefficients.

The process of constructing parametric sets E
p
 continues until, for

some ρ = r in the scheme (0.1), there is no operation ><: active on E
p
.

Evidently, the number of operations ĉ active on £
0
 is not less than r.

To complete the proof we show that r ̂. n.

Prom the properties b
s
) (s = 1, 2, ..., r) we deduce that on E

r

F(Ps) - Ps (s = 1, 2, ..., m) are rational functions of χ with

numerical coefficients.

Consequently, on E
r
, p

n
 can depend only on x

lt
 F

u
 F

2
, .... F

r
 and

F(p
m
), i.e. p

m
 depends either on r or r t 1 additive parameters, according

as F(p
m
) is constant on F(p

n
) is constant on E

r
 or not.

 1

However, p
m
 = P

n
(x), i.e. p

m
 depends on η + 1 additive parameters.

Hence г £. п. The proof of the theorem is now complete.

Thus, the polynomials being computed by (0.1) depend on not more than k + 1
additive parameters, where k i s the number of operations χ in the given
scheme. Because (0.1) contains only arithmetical operations, and a finite
number at that, that dependence i s rational. See [4] for analogous con-
nections between the number of parameters on which pm depends and the number
of operations ± in (0.1).



112 V.Ya. Pan

Turning to the question about " individual " schemes of computation

without initial conditioning of the coefficients (see Introduction, p. 107),

we note that if the number of all arithmetical operations in the schemes

is bounded by some constant, then there are only a finite number of

different schemes. Hence, and from the proof of Theorem 1.1 (see the

footnote on the previous page) we deduce that in the class of all poly-

nomials of degree η (where η is any natural number^, for almost every

polynomial (in the sense of the measure Λ/"
+1
) within some neighbourhood,

Horner's method is the most economical in relation to the number of

operations χ and ± among all "individual " schemes without initial

conditioning of the coefficients.

If the scheme of computation is designed not for the class of all

polynomials, but for some sub-class Щ, then it is natural in this scheme

to allow operations on constants relative to ?$ (but not relative to poly-

nomials outside $β). We shall call such schemes ^β-schemes (O.I). The

identity P
n
(x) = p

n
 in them must be regarded as an identity in χ and in

<k> а„ on ξβ.
^-schemes (0.1) can contain a smaller number of arithmetical

operations than Homer's method, as, for example, with

?β= { (oo, do Oo) !, η = 2
k
 - 1 (see the example on page 106). In

this case, however, almost all polynomials of degree η within some neigh-

bourhood must remain outside the class ξβ, since one can deduce the follow-

ing result from the proof of Theorem 1.1.
1

T H E O R E M 1.2. If a ty-scheme (0.1) contains at most η - k

operations £ or at most η - k operations ±, then the set £β generates in

the space
£
Ό = {(α

0
- fli, · · ·, a

n
)}

a rational surface of dimension not greater than η + 1 - k.

§2. Lower bounds for the number of operations in schemes with
initial conditioning of the coefficients

I. Statement of the problem. We define schemes with initial condi
tioning of the coefficients by a chain of equations

Ρι = ϋίοΒΊ(ί = ί, 2, ..., τη),

which only differ from (0.1) of the introduction (see p. 106) by allowing

operations to be carried out on any real functions of the coefficients of

the polynomial to be computed (and not only on absolute constants and the

coefficients a
0
, .... а„, as was done in §1). The schemes (0.4)-(0.7)

previously mentioned on pp. 107-108 are examples of such schemes.

Similarly to the «p-schemes (0.1) (see p. 106) there correspond
φ -schemes (2.1) in which, in contradistinction to (2.1), the equation

1
 See footnote on previous page.
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P
n
(x) = Pn is satisfied identically, not by all values of x, a

0
, a

it
 ..., α

π
,

but by all χ and all possible values of a
0
, ..., a

n
 from the class ξβ.

Evidently the schemes (2.1) are special cases of 5β-schemes (2.1), when the

class $ consists of all possible values of the coefficients.

All functions of the coefficients appearing in ^-schemes (2.1) are

called parameters and are written as

bk = h(a
0
, ..., a

n
) (A = 1, 2, .... r). (2.2)

The equality P
n
(x) = p

m
 in ^-schemes (2.1) means that P

n
(x) can be

expressed as a rational function of χ and of the parameters

λ
1 (
 λ

2
 λ

Γ
. We note that the φ-schemes (0.1) are special cases of $-

schemes (2.1),
1
 when P

n
(x) takes the form of a function of x, a

0
, aj. a

n
.

The main object of this section is the derivation of lower bounds for

the number of arithmetical operations in schemes with initial conditioning

of the coefficients. These bounds will be obtained by establishing a

dependence between the number of arithmetical operations in ^-schemes

(2.1) and the dimension of 9β.

2. Dependence between the dimension of $ and the set of parameters

used in ^-schemes (2% I). There is a simple but important lemma.

L E M M A 2.1 (Belaga). If at most r parameters are used in a
^-scheme (2.1), then φ generates a surface of dimension at most r in the

space { (ao, а
г
 a

n
) i.

PROOF. From t h e c o n d i t i o n Pn(x) = pm (x, Klt . . . , λ Γ ) we deduce t h a t

ak = yh(K λ2, . . . , λΓ) (Α = 0, 1, . . . , η), (2.3)

where all the φ*, are rational functions, since only arithmetical operations

are used in a ^.-scheme (2.1) and only a finite number of them. So Lemma

2.1 is proved.

In what follows we need the following definition.

D E F I N I T I O N 2.1. We call a ^-scheme of the form (2.1) minimizing

± (or minimizing x) for another ^-scheme of the form (2.1) (assuming that

both schemes correspond to the same class *β) if the first scheme contains

no more operations ± (or x) than the second.

For example, the scheme mentioned on p. 107 for η = 4 is a ^β-scheme

of the form (2.1) minimizing χ for Homer' s method, and for any $

Horner' s method is a ^-scheme of the form (2.1) minimizing ± for the

schemes on p. 107.

3. Dependence between the number of additions and subtractions and
the number of parameters in a 5β -scheme (2.1). Let a $-scheme (2.1) be
given. We select in i t al l those rows in which pt = R{ ± fi" and re-label
the pi in them in order of occurrence as: p l t p 2 , · · . , Pk- It turns out
that not more than one new independent parameter is actually introduced
into the scheme as a result of the operations undertaken for the transi-
tion from ps to Ps + i· For example, the operation λ^,λ^χ in fact increases
the number of parameters in the scheme by only 1, since we can use
1 If the class $ consists of a single element, then the parameters are constant

on $. Consequently, in this case, ίβ-schemes (2.1) are also φ-schemes (O.I).
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the product λ
3
 χ, where λ

3
 = Xi λ

2
 is a parameter, instead of the product

Xi\
2
x in later calculations. This gives us the required dependence ex-

pressed in the following lemma.
L E M M A 2.2 (Belaga). For each ^-scheme (2.1) using not more than

k operations ±, a minimizing ^-scheme of the form (2.1), involving at
most k + 1 parameters, can be constructed.

A rigorous proof of Lemma 2.2 is given in W-, it is similar to the
proof of Lemma 2.3 (see below).

1. Dependence between the number of multiplications and divisions and
the number of parameters in ̂ -schemes (2.1)· Let a $-scheme (2.1) be
given. We select in it all those rows in which pj = Rj χ Rj and re-label
the pj in them in order of occurrence as p

l t
 p

2
, .··, pi. Just as in the

deduction of a lower bound for the number of operations ± we find that
Ps+Ί actually contains not more than two new independent parameters in
comparison with one of p~

lt
 p~

2
, ···> P~s· For example, the operation

χ + Xi + λ
2
 gives only one new independent parameter λ

3
 = Х

г
 + λ

2
. To

obtain a formal proof we examine a reduced expression of the $ -scheme
(2.1):

Pj = T'i X T] 0 = l,2,...
t
Z), )

I V * /

)

where

1) Τ} = Uj + z), T) = if- + Z), j = 1, 2 I + l;

2) each Uj, Uj is a linear combination with integer coefficients of

the parameters λί λ
Γ
;

3) each Zj, Z'j is a linear combination with integer coefficients of

χ and all p~
if
 where i < j.

Clearly, both schemes: the «β-scheme (2.1) and (2.4) - contain I

operations χ . We define:

U;
+l
 = X

2l+l
, Щ = 1

2Н1
, U]=\j (/ = 1,2, . . . , / ) . (2.5)

We replace each Uj, U'j in (2.4) by the appropriate X
s
. We shall take

Xj, X
2
 ΧδΖ+ι obtained here as parameters in 2.5. So the required

scheme has been constructed and we here obtain the following result.
L E M M A 2.3 (Belaga). For any ^-scheme using not more than I

operations ±, a minimizing if ξβ -scheme of the form (2.1) involving at
most 2ί + 1 parameters, can be constructed.

5. Improvement of the estimate in Ц. Let д > 2 and a
0
 be a non-zero

constant on $. Then, for (2.4) and hence for ξβ-schemes (2.1), we can
construct minimizing ĉ 5β -schemes in which some of the operations χ do
not introduce more than one parameter each. Let us attach a more precise
meaning to these words. Let a $ -scheme have the form (2.4). We compare

the j-th operation in this scheme, j = 1, 2 I. with the dimension
Dj of the minimal space spanned by the parameters U

q
, U

q
 (q = 1 j).

We say that the j-th operation χ introduces into this scheme Vj parameters
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г
if Dj - Dj.i. = V/. Clearly, 0 J? V, < 2. We show that Σ V,· 4 21 - 1. To

i = ι
begin with we assume that thjsre are no divisions in (2.1), i.e. all the

~Pi are polynomials in χ and X
s
. Let py be the first of these with a non-

integer leading coefficient, say:
PJ = \}-i X T) ~= l

2j
^ (Ζ'-

If in (2.4) we put ~pj = X2j.iZj instead of p~j = \ 2 j - i χ Ту, then we
obtain a minimizing χ ξβ-scheme of the form (2.1) for (2.4), containing
only 21 parameters. This method is not always valid: рг = x(x + λ),

P2 = x2, Рз = PQ - Pi·
However, there is an operation £ in the scheme introducing less than

two parameters, because at some point in the scheme a ~p~j emerges which is

non-linear in x. By means of the identity

(a
o
x + l

t
) (x + X

2
) + λ

3
 = a

o
x (x + ̂  -f

it is not difficult to construct, for a given $ -scheme (2.1), a

minimizing $-scheme in which, after its reduction to the form (2.4), the

inequality

holds. In the general case, when divisions can be performed in (2.1), the

same result is obtained. To derive it we use the fact that for arbitrary

rational fractions

R
, _ Ρ' (χ, X)

 Rl
, _ P"(

X
, λ)

Q' (x, λ) ' Q" (χ, λ)

the denominator of the product (R' + X
1
)(R" + λ

2
) , where \

λ
 and λ

2
 are

parameters independent of χ and λ, is equal to Q'(χ, λ) · Q"(χ, λ) after

all possible cancellations, i.e. if the operation у introduces two
parameters, cancellation is impossible. On the other hand, the final
expression p

m
 does not contain a denominator depending on x; this can be

shown, for example, by differentiating p
m
 n+1 times with respect to x.

The result of Lemma 2.3 can now be improved to the following form.
L E M M A 2.4. If η $. 2 and OQ is a non-zero constant on ίβ, then for

any ψ-scheme of the form (2.1) using no more than I operations a

minimizing ty-scheme of the form (2.1) involving at most 2l parameters

can he constructed.

In the following, unless otherwise stated, we shall consider only

those classes ξβ that consist of polynomials of degrees at least 2 and we

shall assume that the leading coefficient a
0
 is not identically zero on $.

6. Bound for the number of arithmetical operations. From Lemmas

2.1, 2.2 and 2.4 we deduce the following result.
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T H E O R E M 2.1 (Belaga).
1
 If the «β -scheme (2.1), for η ̂  2, makes

use of at most η - t operations ± or at most ~τ~\ + 1 — t operations x,
2

then ^ is a rational surface of dimension at most η + 1 - t in the space

{ (ao. «it · · ·. a
n
) i ·

In particular, taking *β = { (αο, aj a
n
) j, we deduce from

Theorem 2.1:

C O R O L L A R Y 2.1. Any scheme (2.1), for η > 2, uses at Zeasf π

operations ± anoi at least -γ- -\-ί operations x.

We denote by 4$JV, *, η the union of all those sets $ for which ^-schemes

exist containing at most N arithmetical operations, of which either at

most η - t are operations ± or at most -γ\ + 1 — t are operations x.

Since there is only a finite number of different ίβ -schemes of the

form (2.1) in which the number of arithmetical operations is uniformly

bounded, we deduce from Theorem 2.1:

C O R O L L A R Y 2.2. The set ?&N,t,n consists of a finite number of

rational surfaces of dimension at most η + 1 - t in the space

ί (αο <*n) !·

I t fo l lows from C o r o l l a r y 2.2 t h a t for almost all (in the sense of the

Mn 1 measure) polynomials of degree n, within some neighbourhood, any
computing scheme independent of χ and using only arithmetical operations

contains at least —~- + 1 operations χ and at least η operations ±.

NOTE 2.1. All the results and proofs of §§1 and 2 can be generalized without
any essential changes to the case when the coefficients, variables, and constants
are complex.

§3. Construction of schemes with i n i t i a l conditioning of the coefficients

for the computation of one polynomial

In this section we shall construct schemes with in i t ia l conditioning
of the coefficients in which, to within one or two operations, the bounds

1 In Theorem 2.1, Belaga' s bound for the number of operations χ is improved by
1 (to derive Belaga' s bound i t is sufficient to use Lemma 2.3 instead of
Lemma 2.4).

2 As an example of $ -schemes (2.1) using fewer than η operations ± and less

than I -^-1 + 1 operations £ we can take the following scheme:

=l, 2, ..., к — 1),

It is easily seen that the dimension of the set in this case is less than
n + 1.
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in the preceding section are attained.

First of all we construct a scheme in which an arbitrary polynomial of

degree η with real coefficients can be computed by [^4—1 multiplications

and n + 1 additions, using only real numbers. This is the main result of

§3.

I. Lemmas about a pipe and wires and a property of the roots of poly-

nomials with real coefficients. Our object at this point is the derivation

of a property of polynomials with real coefficients, expressed in the

following lemma.

L E M M A 3.1. For any set of real numbers d
it
 d

it
 ..., d

n
.^ there

exist a constant N > 0 and a continuous piecewise-linear function u(t),

- oo < t < + oo, u'(i) = constant < 0 for \ t \ < N, such that the polynomial

in ζ

η

1=1

where η = 2k + 1 and dn = 1, can be expressed in the form

2k
pn{z,t) = yUz~Zl(t)h (3.1)

where the z\(t) (1=0, 1, 2, ..., 2k) are continuous piecewise-algebraic

complex functions of t and the functions

z
o(O> ζ

2
ι-ι (t) ̂ r z

2
i (t), z

2
i_

t
 (t) z

2
; (t) (Z = l, 2, ...,k),

are continuous and real.

For convenience of presentation we construct an intuitive model of a

polynomial and its roots in which the required properties will become

evident.

Suppose that we are given a polynomial in x, of odd degree η = 2k + 1

η

with real coefficients, of the form u = Ρ
η
(
χ
) - Σ d

m
 х

ш
, d

n
 = 1. We

m = 1

place the graph of и = P
n
(x) in a vertical plane OXU with vertical axis

OU and imagine that this graph lies inside a thin, curved, hollow pipe,
infinite on both sides, with holes under the minima and above the maxima
of P

n
(x) and also at the infinitely remote points of P

n
(x)· We label all

the openings of the pipe from left to right with the numbers from zero to
2(? + 1, 2 Q ^ η - 1 = 2k; we label the segment of the pipe from the
(Z-l)-th to the Z-th opening, Ζ = 1, 2, 3, .... 2 Q +1, with the number Z.

Hereafter almost up to the end of the proof of Lemma 3.1 we shall assume

that all the holes in the pipe are situated at distinct levels of u.

We construct the complex plane OXY perpendicular to the plane OXU

with real axis OX and imaginary axis OY. In OXY we have for each value

u on OU, η roots Zj = ZJ(U) = XJ(U) + iyj(u), j = 0, 1 η - 1, of

the equation u = P
n
(z), ζ e OXY, и e OU; ZJ(U) are continuous single-

valued complex functions of u.
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We consider the graphs of these functions in the space OXYU. We

surround the graphs of each of them (representing an infinite connected

branch) by an infinitesimally thin tube with holes at the points where

u = ± oo and nowhere else, and we regard these tubes as not communicating

with one another. The given tubes must not interfere with the previously

constructed pipe surrounding the graph of и = P
n
(x) in the plane OXU.

We remove from the graphs of the roots and from the tubes all their

segments of positive length in the plane OXY, i.e. inside the pipe. The

remaining parts of the tubes have holes at the extremal points of u = Ρ
η
(
χ
)>

where the pipe has openings. The boundaries of these holes in the pipe

must coincide with the boundaries of the holes in the tubes. We do this

in such a way that:

a) each segment of the pipe has continuations in the form of thin

tubes running to u = + со, u = - oo;

b) all segments of the pipe have a common internal region with their

continuations and with each other;

c) the interior in the system "pipe-tubes" communicates with the

exterior only through infinitely remote holes.

We shall regard all tubes isolated from the pipe as continuations of a

null (non-existent) segment of the pipe. For 1=0, 1, 2, .... 1q + 1,

q = Q, we call the Z-th segment together with its continuations the l-th

section of motion. As и.-* ± oo, we have one pipe and 2k tubes surrounding

the 2k + 1 branches of the graphs of the roots ZJ(U). At u = + oo the

pipe and all the 2k tubes each have one hole and similarly at u = - oo. We

place in each of these holes at и = + oo the end of an infinite thin wire

(different wires to different holes) and thread all the wires through the

interior of the tubes (and pipe) taking the wire all the time through the

points of the graphs of the roots ZJ(U) (fig. 1; in the figure the space

OXYU is projected on the plane OXU; the arrows indicate the paths of

Pig. 1.
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the ends of the wires: the continuous lines denote the paths inside the
pipe, the dotted lines denote the paths outside the pipe and the plane
OXU all drawn projected on this plane OXU). We assume that the ends of
the wires are inserted into the holes at the time t = - оэ and afterwards
move alternately downwards and upwards, not leaving the corresponding
interior of the isolated tubes or the interior of the pipe and tubes -
continuations of the pipe. At any time t the ends of all the wires must
have a common projection u(t) on the axis OU. The following conditions
must be satisfied for the progress of the ends of the wires in the interior
of the pipe and tubes.

1) At any time t in each non-null section the end of each wire hangs
at the same level;

1
 in the null section 2k - 2q ends of wires hang at the

same level; thus, each wire lies in some section - its position section
at the time t.

2) All the wires must be labelled with the numbers 0, 1, 2, .... 2k
so that at each moment of time t the end of the zero wire lies inside the
pipe and the ends of the (2l - l)-th and (2i)-th wires, I = 1, 2, ..., k,
either both lie inside the pipe or project on to complex conjugate points
in OXY (the (2l - l)-th and (2Z)-th wires are called pairs of wires).

3) In a sufficiently small neighbourhood of any time t
0
 either the

ends of all the wires always remain in the same sections or the ends of
all the wires except two, and these two wires, moving inside the pipe,
exchange their position sections at the time to (these sections must be
neighbouring and non-null). In the latter case, and only then, the
direction of the motion of u(t) up and down the OU axis changes its
sense at t<>

If we put |u'(t)| = ν = constant, i.e. if we fix the absolute size of
the rate of change of u(t), then the movement of the ends of the wires can

always be continued uniquely (and, moreover, for both t increasing and t

decreasing) from any time t
0
 for which conditions 1) and 2) are maintained

and the ends of the 2k + 1 wires are at some common level u(t
0
). Three

cases are logically possible: either our process re-cycles, or u(t) -» oo

as ί -» со, i.e. the ends of all wires rise, as t -» oo, to the upper in-
finitely remote hole in the tube (compare below with the first condition
for ending the motion), or u(t) -* - oo as t -» со, i.e. the ends of the
wires descend to the lowest hole of the tube (compare below with the
second condition for ending the motion).

For the proof of Lemma 3.1 it is sufficient to prove that in fact only
the third case can arise: u(t) -> -co as t -> +co. To begin with we prove
that re-cycling is impossible i.e. that |u(t)| -» со as t -* + oo.

Evidently properties l)-3) can always be satisfied in the section of
change of t, when t is so small that u(t) lies above the projection of
any extremum of the graph of u = Ρ

η
(

χ
) »

η
 OU. We adopt a numbering of

the wires for which property 2) holds in this section of change of t. We

change to more formal language for the construction of the proof.

At the junction of two sections at the level u(t), the ends of two of the

wires hang level at the time t.
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We call the totality of the following given objects the state A:

a) the direction sign of the state: plus or minus;

b) the set of numbers of the state is the set of integers io(A),

ii(A) i
n
-i(A) from zero to 2q + 1 inclusive, 0 <& q 4 k, where there

are η - 1 - 2g zeros among these numbers and the rest are all distinct.

As is clear from the definition, there is a finite number less than 2n!

of different states.

We label all the consecutive times t
Vl
 V = 1, 2, .... in which the

direction of movement of the level of u = u(t) along OU changes, also in-

cluding here t = ± 00. We call the state A consistent with the state of

the wires in the interval of time (t
v
, i

v
+i), V > 0, if:

a) the direction sign of the state A agrees with the sign of the

number u'(t) for values of t in the interval (t
v
, t

v+1
);

b) each number i
s
(A) of the state A, s 0, 1, ..., η - 1, is equal

to the number of the situation section of the end of the s-th wire for
t e (t

v
, t

v+1
).

In what follows we call the state A consistent with the state of the

wires in the interval (t
v
, i

v
+i) briefly the state with index V.

We say that a state В follows Л if Л has index V and В has index

ν + 1, V ̂  0.

If В follows A, then we describe В as succeeding A, A as preceding B.

If we are given a state A with index V and a value u = u(t) of a level

on OU for some t e (t
v
, t

v
+i)i *v + i ¥ + °°» then by virtue of the

continuity and unique definition of movement of the level и = u(t) and of
the ends of the wires at any finite time, the state В with index ν + 1

exists and is uniquely determined.

Two states A with index V and В with index V + 1 always have opposite

direction signs and identical sets of numbers, except for two numbers from

each of the states A and В which change places. The numbers are positive

and differ by one from one another: i
s
(A) = i

s
(B), s ¥ p, q,

1 < ip(A) = iq(A) - 1 = iq(B) = ip(B) - 1.
From the above argument we deduce three simple properties of

successions of states.
1°. If a state В has the indices V and μ, ν ¥ μ at the same time, then

a state С with index ν + 1 has at the same time another index μ + 1 and a

state with index V - 1 has at the same time the index μ - 1 (property that

the order of succession of states is independent of the time.

2°. A state with index V has no predecessor if and only if V = 0.

3°. A state with index V has no successor if and only if i
v
+i = + 00;

in this case, for some t < t
v+1
 one of two conditions for ending the motion

is satisfied:

1) u(t) lies above the projection on OU of every hole in the pipe,

except for the one infinitely remote, and u'(t) > 0; also u(i
v + 1

) = +00.

2) u(t) lies below the projection on OU of each hole in the pipe,

except for one of the infinitely remote holes, and u'(t) < 0; in this

case u(t
v+1
) = - 00.

L E M M A 3.2. (about the acyclicity of states). One and the same state

cannot have two distinct indices.
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PROOF. Suppose that a state A with index V also has index V + r where

r > 1. Then by property 1) of the succession of states each state with

index ν - μ, where μ = 0, 1, 2, ..., ν, has index ν + г - μ. In particular,

a state with index 0 has index r, r ̂  1, and consequently has a preceding

state with index г - 1. This contradicts property 2) of the succession of

states and proves Lemma 3.2.

By the finiteness of the set of all states Lemma 3.2 leads to

C O R O L L A R Y 3.1. There is an instant at which one of the conditions

for ending the motion is satisfied.

We shall show that the first condition for ending motion cannot hold.

To do this we study in greater detail the behaviour, taken separately, of

a pair of wires for all t. We attach a motion sign and a state at a given

time to each pair of wires. The direction of movement of the end of any

wire inside the pipe from left to right will be regarded as positive and

from right to left as negative. We take the movement of a pair of wires

inside the pipe as positive if the dir.ection signs of the movement of the

ends of the pair of wires are identical and negative if these signs are

opposite. We regard the movement of each pair of wires outside the pipe

as negative.

We define the state of the pair at time t for any given pair of the

(2i - l)-th and 2Z-th wires, 1 4 I ̂  k, as the collection:

a) of a plus or minus sign, corresponding to the motion sign of the

given pair at time t;

b) of two integers of the state of the pair corresponding to the

numbers t
2
i_i(A>, IQI(A) (see above, p. 120), where A is the state of the

wires in the interval (t
v
, t

v+1
) containing t.

As the time t moves from -oo to + oo, the state of a given pair, the

(2Z - l)-th and 2i-th wires, can change only at certain discrete critical

times at which the direction of movement of u(t) along OU changes. We

shall ignore some of them. Namely, if the states of our pair coincide up

to and just after a critical time, but the direction sign of the movement

of u(t) along OU is changed, then we ignore this time and afterwards we

investigate the remaining critical times. After all the discards we

obtain a chain of critical times t
VjL
 < t

Vz
 < ... < t

Vj
_, r >, 0. To this

chain we add t
VQ
 = - oo and t

Vj
.
+
 j_ = + °°.

We consider the movement signs of a given pair and the direction signs

of the motion of the level of u(t) along OU in sufficiently small half-

neighbourhoods of the times t
v
 • (j = 0, 1 r + 1), not containing t

v
.

itself. We deduce:

a) in the transition from any time in a left half-neighbourhood of

*v (j = I· 2, ..., r) to any time in a right half-neighbourhood of t
v
-

both signs (of movement of the pair and direction^of motion of u(t))

change to their opposites;
 1

b) in the transition from any time in a right half-neighbourhood of

In passing through a critical time the direction sign of the motion of one
wire in the pair changes to its opposite and does not change for the other
wire; one of the numbers izi(A), ί

2
ί-ι(Λ) corresponding to the first wire

does not change, the other changes hy one.
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*VJ О = 0, 1, 2 r) to any time in a left half-neighbourhood of

both signs are invariant.

Just as the motion of any pair of equal sign both in any neighbourhood

of the initial time t
VQ
 = - oo and in any neighbourhood of the final time

*v
r + 1
 = + oo turns out to be negative, so the direction sign of the motion of

u(t) along OU in these neighbourhoods is likewise negative. Consequently

the first condition for ending motion cannot be satisfied. Hence the

assertion of the main Lemma 3.1 follows. So far we have proved this for
η

the case when all the extrema of the polynomial P
n
(x) = Σ of/ x

l
 lie at

ί = 1

different levels. In particular, the polynomials Pn(x, C) = Pn(x) + я

have this property for any fixed set of real coefficients of the polynomial
Pn(x) if С i s taken sufficiently large. Taking the limit as С -» + oo we
deduce Lemma 3.1 in the general case.

2. Further properties of the roots of a polynomial with real
coefficients. A pair of roots of a polynomial with real coefficients are
any two of i t s roots which are either complex conjugates or are both real.

LEMMA 3.3. For arbitrary real numbers M, du d2, . . . , ci4y, j ^ 1,
α real number cf0 can always be chosen such that among the roots of the
polynomial in ζ 4;·_1_ι

Pij+1(z, do)= 2 dtz
l,

1=0

where d
A
j +

 1
 = 1, there are four whose sum is real and which split up into

two pairs of roots.

PROOF. We take functions u(t) and ζ ι (t) (1 = 0, 1 4>) satisfying

the conditions_of Lemma 3.1 such that the polynomial in ζ

P*j+i(z, t) = P
A
j+x(z, - u(t)) is represented in the form (3.1). Because

u(t) ->±ooast-»±co, the roots of the polynomial P
4J
+i(2, - u(t)) are

asymptotically equal (as t -* ± oo) to the roots of the equation

z
4 J + 1

 - u(t) = 0 (figs. 2 and 3).

From the functions zj(t), 1 = 1 , 2, ..., 4/ (see (3.1)) we choose two

pairs: z
2s
.
1
(t) and Zzsit), z

2rml
(t) and z

2r
(t) each of which, as t -» + oo

or as t -> - со, is

Pig. 2. Pig. 3.



Methods of computing values of polynomials 123

asymptotically equal to the pair of roots of z
n
 - u(t) = 0 having the

maximal absolute value of the real part of all the complex roots of
z

n
 - u(t) = 0 (the first pair as t -+ + со and the second as t -> = со), (in

figs. 2 and 3 the domains in which these pairs lie are bounded by the
double circles). If these two pairs of functions coincide, i.e. s = r, we
select from the interval 1 4 ρ ζ 2j an arbitrary integer ρ not equal to r.

Then at least one of the continuous real functions of t

for

p
 for s = r

tends to - oo as t -> - со, and tends to + oo as t •* + oo, and consequently

takes all possible real values, including M. Lemma 3.3 is now proved.
L E M M A 3.4. For any real numbers M, d

lt
 d

2
, ..., d

Ap
+

2
, ρ £. 0 α

real number cf
0
 always exists such that among the roots of

— 4p+3

^4р+з(2, d0)— 2 dmzn, where dAp+3 = 1, there is a pair of roots whose
m=0

sum is equal to M.
PROOF. Рог the coefficients of P^

p
+

3
(z, 0) we find functions u(t) and

z\(t) (1=0, 1, .... 4p + 2) satisfying the conditions of Lemma 3.1, such

that the polynomial Ρ
4 ρ
+

3
(ζ, t) = P

4p
+3(z, -u(t)) can be expressed in the

form (3.1). Using the asymptotic equality, as t •* oo, of the zeros zi(t)

(I = 0, 1 4p + 2) of P
4 p + 3

(z, ~u(t)) to the roots of the equation

z
4 p + 3

 - u(t) = 0 we deduce that, among the pairs of functions z
2
s-i(t),

*2
S
(i) (s = 1, 2, ..., 2p + 1) there are exactly ρ + 1 distinct pairs for

which z
2s
.i(t) + z

2s
(*) •* + oo ast->+oo and exactly ρ + 1 distinct

pairs for which z
is
-i(t) + z

ss
(t) •* ~ oo as t -» - oo. Because there are

always 2p + 1 different pairs of functions z
2 s
.i(t), z

ss
(t), at least one

of them satisfies both conditions simultaneously. By the continuity of the

functions zi(t) (I = 1, 2, .... 4p + 2) we now obtain Lemma 3.4.

3· A scheme for computing polynomials of arbitrary degree with real

coefficients. We shall now construct for any natural number η a computing

scheme for polynomials of degree η with real coefficients with

- ^ Y — multiplications and η + 1 additions.

To begin with we state as a lemma the following fairly evident result

(see scheme (0.4) in the introduction).

L E M M A 3.5. Let g
4
(x) = χ* + χ

3
 + β*

2
 + β'χ + β" be a given poly-

nomial. Then there are polynomials with numerical real coefficients,

λ = λ(β, β', β"), λ' = λ'(β, β\ β"), λ" = λ"(β,
(
 β', β") ίη β. β', β"

such that the following identity in χ, β, β', β" is satisfied:

g
t
 (x) = (x

2
 + λ) (χ

2
 + χ + λ') + λ".

We now construct a computing scheme for polynomials with real

coefficients (this scheme has already been mentioned in the introduction

on p. 107):
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X,

i>4s+l — P4S-364 I A4S+1>

Pift+3 ~ Pik+i {Si +

= 1 > 2 ' • • • • / t ) ·

71 ( * ' " " η ί _ _
" f o r n = 4* + l, 4/с + З,

*-i + αη for η = Ш + 2, 4Α + 4.

In scheme 3. 2 the identity symbol s igni f ies identity for al l sets of real
values of x, oo, au . . . , an.

THEOREM 3.1. Real continuous piecewise-analytic functions
λ{ = λί(θο, ο,ί an) always exist for which all the equations of the
scheme (3.2) are satisfied.

PROOF. We consider f i r s t the cases when η = 4k + 1, 4k + 2. We
determine the c o e f f i c i e n t s of PA.k+i(z) from the l a s t equation in ( 3 . 2 ) .
We write the express ion

(χ2 + χ + λ48_2) (χ2 + λ48_!) + λ4β (s = 1, 2, . . . , к)

in the form

By Lemma 3.3 we have: for arbitrary real coefficients of the polynomial

4S+1

?=0

where s i s an integer, 1 < s 4 k, а£*s = 1, real numbers a[ $~ ,

a2
 a4s-o » Эг* ι Рз* . β* · λ 4 5 + 1 can always be found such

that

/Wi (x) = Pis-3 (x) {ж4 + x3 + β^χ» а- р(

3

3)ж + β(

4

8)} + λ4ί+1,

where
%

Using this we now establish an iterative process for obtaining the
(4S+1)

unknown parameters a
q
 (q = 1, 2 4s + 1) from the known

coefficients \
4s+1

, β£°. β$
β )
, β1°, «|

4 S
"

3 )
 (Ζ = 1, 2 4s - 3 ) . We

begin this process with s = k and then repeat for s = k - 1, for s = k - 2

etc., down to s = 1 inclusive. As a result, we obtain, in particular, the

set of values of the unknown parameters X
t
 = a

t
 , X

4 s
+i (s = 1, 2 k)

and also the intermediate parameters β£ , Pa • β£ (s = 1, 2 k).
For each s = 1, 2 fe, using values already established for the
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parameters β
2
 , 3g ', β;

5
', we determine the values of the unknown

parameters λ
4 ί
_

2
, X

As
.
lt
 X

AS
 from the equation

= (Sz + K-i) (h
2
 + λ

48
-
2
) + λ

4ί
 - (ζ

2
 + λΜ-0 (a

1
 + ж + λ

48
_
2
)

By Lemma 3.5 this can be done. We now have the required functions

λ
;
· = Xj (a

0
, a

lt
 ..., a

n
) satisfying scheme 3.2 in the cases

η = ik + 1, 4k + 2. In the cases η = 4fe + 3, 4fe + 4 we obtain from the

last two equations of (3.2) the values of the coefficients of p^k+i(
x
)

of the parameters λ
4
^+

2
, X^k+з for which these equations are satisfied.

The existence of such real values follows from Lemma 3.4. Next, for the

given coefficients of p^k-nix) we determine the values of all the

remaining unknown parameters Xj (j = 1, 2, . . · , 4fe + 1) by the method used

above in the case η = 4fe + 1. Finally, when the brackets are removed and

the coefficients equated in all the equations (3.2), the problem of

determining the Xj is reduced to the solution of a system of algebraic

equations, i.e., all the functions Xj = Xj (OQ, a^ a
n
) are con-

tinuous piecewise-analytic and, more precisely, are super positions of a

finite number of polynomials and continuous piecewise-algebraic functions.

The proof of Theorem 3.1 is now complete.

NOTE З.1. The stability of the scheme (3.2) follows from the fact

that all the functions Xj (ας,, a
t
 a

n
) are piecewise-analytic.

Stability consists in that the error in computing the scheme tends to

zero when the error with which the coefficients OQ, a^ a
n
 are given

tends to zero, and the rates of tending to zero are proportional in both

cases. All schemes we shall construct later are stable.

1. Computation of polynomials with complex coefficients. Every poly-

nomial of degree η with complex coefficients can be computed with Г
га
~^~ Ί

multiplications and η or η + 1 additions in which complex, not

necessarily real, numbers occur, i.e., for this aspect of the problem we

can indicate better computing schemes than 3.2.

T H E O R E M 3.2. (T.C. Motzkin, J. Todd, E.G. Belaga).
1
 For any

polynomial of degree η = 2k a computing scheme can be produced in which

the lower bounds for the number of operations in §2: Γ-5-1 + 1 multi-

plications and η additions, are attained to within one addition (see [4]

and [5]; we quoted this scheme on p. 107, scheme (0.5)).

T H E O R E M 3.3. There exists a scheme, suitable for the computation

of any polynomial of odd degree, in which the lower bounds for the number

of operations in §2 are attained to within one multiplication (see scheme

(0.6) on p. 108 and Lemma 4.3).

As far as questions about the choice of optimal schemes for computing

the values of a given polynomial and about the construction of algorithms

for the initial conditioning of coefficients are concerned, their answers
1
 A method for constructing such schemes was first pointed out hy T.C. Motzkin

[2], J. Todd [3] constructed examples for η = 4 and β. Ε. G. Belaga L4J, L5J
proved Theorem 3.2 for any k.
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can be found in [б] and [ll] together with numerous examples of the
application of schemes with initial conditioning of the coefficients to
the approximate computation of elementary functions.

§1. Schemes with initial conditioning of the coefficients for
the simultaneous computation of the values

of several polynomials

In this section we examine cases in which the values of several fixed
polynomials are computed together at one and the same real or complex
point common to all the polynomials, moreover, the computations are
repeated many times for several values of z. Such cases are met in com-
putational practice, for example, in the approximate simultaneous com-
putation of two, or more, elementary functions (sin χ and cos x) or in
problems of approximate computation with successively increasing degrees

of accuracy. In computing schemes of this kind it is natural to carry out

together the initial conditioning of the coefficients of the given poly-

nomials, since an additional effect is possible later on if we make use

of intermediate results for the computation of several polynomials together.

As a result of such "interlacing" of schemes of computing separate

polynomials, we succeed in saving roughly Qq operations, where q is the

number of polynomials being computed, whose degrees are greater than unity,

and sup θ = - . This extra effect is particularly noticeable in the

computation of several polynomials of low degrees (see the example in the

Introduction on p. 108). The main object of the present section is the

construction of computing schemes suitable for sets of polynomials of

arbitrary degrees. We note that the construction of optimal schemes in

these conditions is tied up with the resolution of certain difficulties

(see the proof of Lemma 4.5). As a preliminary we find lower bounds for

the number of operations. Their derivation is similar to the deduction of

bounds in §2 and we can deal with them without a detailed proof.

I. Lower bounds for the number of arithmetical operations. We define

scheme (4.1) with initial conditioning of the coefficient for the simul-

taneous computation of several polynomials

of degrees n{ (i = 1, 2, ..., s) as a chain of arithmetical operations

Pl
 = R\°R'i{l = \, 2, ...,m), (4.1)

where p\, R\, R'{ and the symbol о have the same meaning as in scheme (2.1)
(see p. 112). However, instead of the single identity Ρ

η
(
χ
) = Pm in (2.1)

we have s identities
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where mj < m (i = 1, 2, .... s). These identities are satisfied for all *

and for all sets of values of the coefficients of the polynomials

P
n i
(x) (i = 1, 2, ..., s). Together with this we can consider "individual"

computing schemes (4.1) in which the sets of coefficients are fixed, but

the identity is satisfied only by x. In the derivation of a lower bound

for the number of operations it does not matter whether the variable χ and

the coefficients of the polynomials P^ (x) take only real or all complex
"I

values. To be definite we shall assume that we choose the real case at

this point.

Using the technique developed in §2 it is not difficult to obtain the

following generalisation of Theorem 2.1.

T H E O R E M 4.1. Let n
it
 n

2
, ..., n

s
 be a set of s natural numbers,

s ̂  1, among which at least one is greater than 1. Then every scheme (4.1)

for the simultaneous computation of the polynomials

of degrees rx{ with variable and independent coefficients a^

(I = 0, 1, .... «{)»
 a
Q

1
^ ¥ 0 (i = 1, 2 s), contains at least N - s

Γ Ν—
s
 + 2 1

operations of addition and subtraction and at least I <f operations

of multiplication and division, where

is the total number of coefficients in all the polynomials P
n i
 (x)

(i = 1, 2, .... s).

If ^N,S, t, Μ is the class of all possible sets of coefficients

α\
ι
ϊ (I = 0, 1, ..., n;; i = 1, 2 s), a^ 4 0, for which there

exists "individual" schemes (4.1) for the simultaneous computation of

the polynomials Р^У (x) each consisting of not more than Μ arithmetical

operations among which there are either at most N - s - t additions and

subtractions or at most 2 multiplications and divisions

(M, t are previously fixed finite natural numbers), then the 9βΐν, s, t, м
lies in the union of a finite number of rational surfaces of dimension at
most N - t in the N-dimensional space of coefficients of the polynomials.

The derivation of Theorem 4.1 hardly differs in principle from that of
Theorem 2.1. We note only that in the scheme (4.1) parameters may "enter"
s times "without the help" of multiplications and divisions and s times
"without the help" of additions and subtractions (and not only once as
in §2), and this affects the lower bound by reducing it.

We turn now to the construction of a scheme for the simultaneous
computation of the values of several polynomials. If we take the com-
putations in the schemes in §3 separately for each polynomial, then we
must use approximately Θ' s more operations in the computation than in the



128 V.Ya. Pan

bound of Theorem 4.1, where sup Θ' = 2. This difference between upper and
n
i

lower bounds can be decreased significantly, sometimes even abolished, in
schemes with combined use of intermediate results.

2· Some auxiliary results for the construction of schemes for the
simultaneous computation of the values of several polynomials with complex
coefficients. We write down two systems of equations

α{·> + α{·_)
ιμ
 = α(·+'> (I = 1, 2, . .., s),

μα(·) + μ'=α(^ΐ),
where

(> {^('_)
2
X' = a(H-2> (/=1,2 s

and where

Then we have the obvious lemma:
L E M M A 4.1. Let

(r = s, s + 1, s + 2, s is α naturaZ number) be polynomials with complex
or real coefficients and arbitrary complex or real numbers μ, μ', λ, λ', λ".
Then the identity in ζ

is equivalent to the system of equations (4.2), and the identity in ζ

p
s+2
 (z) =

 Ps
 (ζ) (ζ

2
 + λζ + λ') -f λ"

is equivalent to the system of equations (4.3).

LEMMA 4.2. Let

г

Pr (ζ) = Σ
ο
 αψζ

τ
~\ (<> =

(г = s, s + 2, s is a natural number) be polynomials with complex or real
coefficients. Then the identity in ζ

is equivalent to the following systems of equations

α
(

8 ) = α
(

8
+2)_

α
(8)

2
λ' (Ζ = 1, 2 s),

α(
8
)λ' -4- λ" = a'

s
~t~^

S ' 8+2 '

where

(4.4)
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Lemma 4. 2 is obtained from Lemma 4.1 by setting λ = 0, as a result of

simple equivalent transformations of (4.3) - successive substitutions of

expressions for a
s

s

+1
.

2
j from the (s + 1 - 2j)-th equation of (4.3),

j = 1, 2 V, in the penultimate equation of this system.

3· Schemes for simultaneous computation of several polynomials with

complex coefficients. We first consider the following scheme for com-

puting a single polynomial of odd degree η = 2k + 1 containing η additions

and k-\-2 = Γ—^-—1 multiplications, i.e. almost the minimum of

arithmetical operations:

(ί = 1, 2, ..., r),

(z)= 2 α^
2
^

1
-' Ξ a

0
p
2h+i
.

1=0

(4.5)

The identity in (4.5) denotes, as usual, that the equation is satis-

fied identically by all possible sets of complex values of z, UQ, a
lt
 ..., a

r

L E M M A 4.3. There exist algebraic functions

Kj = Kj (#o> îi · · · ι ^2&+i) (/ = 1, 2, .. ., 2k -f-1),

which, on substitution in (4.5), satisfy all the equations of this scheme.

PROOF. We define p
n
 = Σ a\

m)
 z

m
'

1
, a

(

o

m)
 = 1, m = 2i + 1

г= о

(i = 0, 1 k). Prom the identity Pife + i(2) = o
0
p

2
(,+ i we find that

ay = J_ (I = 0, 1, ..., 2k + 1). Furthermore, from Lemma 4.2, for

each г from 1 to k, the equation
P21+I — P21-I (g2 + Ki) + λ 2 ί + 1

is satisfied if we express λ-ц, λ
2
{

+ 1
 and the coefficients of

P21-1 = P2i-i(z) as algebraic functions of the coefficients of

Pai+i = P2i+i(z) so that they satisfy (4.4) for s = 2i - 1, λ' = λ
2
ί,

λ" = λ
2
ί

+ 1
. It is easy to verify that in the given case s = 2i - 1 for any

set of a. (j = 1, 2, .... 2i + 1) the system (4.4) has a solution

and, consequently, the required algebraic functions exist.

We shall now consider a scheme for the simultaneous computation of two

polynomials of even degrees greater than two:
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Pu+i = Pv-i (g2 + λ2ί_ι) + Ki

/>2ft = Pzk-i {Z + λζ/,-l) + λ2Α,
2ft

= 2, 3, . . . , &— 1),

) Σ
/=0

s = g3 f λ2,

+1 = Αυ-ι (g 2-г A^y-i) +

I (4-6)

(У = 2, 3, ..., 1),

2ft __

m=0 I

where the identities in the scheme denote that the equations are satisfied
identically by all possible sets of values of z, a

0
, a

lt
 ..., <z

2
fe,

OQ, a
lt
 ..., α

2
£.

It is not difficult to check that the scheme (4.6) contains almost

the minimum of operations x: and ± in the class of schemes for simultaneous

computation of two polynomials P
2
k(

z
)
 anl

^ Pzk(
z
)< where k 4 1, 2; k 4 1.

L E M M A 4.4. For a suitable choice of algebraic functions

Xj = Xj (a
0
, a

u
 ..., a

2
h, a

0
, %, ..., a^),

λ; = Αι (α
0
, α

ι
, ..., α

2
£, α

0
, a

lt
 . .., α

2
^)

(7-1, 2, ..., 2k; 1 = 1, 2 2/с; к>3;к>2)

all the equations of (4.6) are satisfied.
1

PROOF. Let us first suppose that we have a fixed value for λ
ί
. We

find the leading coefficients and their immediate successors in the poly-
nomials P2i+i(*)i P2j+i(

z
) (ι = 1» 2, .... k - 1; j = 1, 2, ..., k - 1)

in scheme (4.6). They are the same for all polynomials: the leading
coefficients are equal to 1 and the next after the leading coefficients
are λ

1 #
 Hence

1
 If k = 2, k = 2, then the assertion of Lemma (4.4) is not true when

simultaneously

CL\ ПА Д О (Χη

a0 a0 ' 4 ~ 0

Otherwise i t is true. Hence we can always compute a pair of polynomials
P2fe(z) and P?k(z) either fay scheme (4.6) or by the scheme (4.7) which is
obtained by the use of scheme (0.5) for both P2fe(z) m d P^k(z) i .e . with an
extra addition.

A pair of polynomials P^.{z), P^(z) whose values cannot be computed by
scheme (4.6) will be called " d i f f i c u l t " .
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Prom the equation p2fe = p2fe-i(z + Х2*-1) + λ2£ we obtain an expression for

X2k in terms of Xi and the coefficients do, a l F . . . , a2fe and from the

equation p2£ = P2\mi{z + X2£-i) + X2£ an expression for X2£ in terms of

A^, U Q V (Zj, . . * , ^2jk«

By the same methods as in the proof of Lemma 4.2, we can now find

algebraic functions Xj = λ*(λι, α0, a 1 ( . . . . a2k), 0 = 1, 2 2k - 2),

such that after substituting these in (4.6), al l the equations (4.6) from
2k

g
2
 = z

2
 to the identity Σ a, z

2
 = a-oPzk inclusive are satisfied

ί = 0
for arbitrary choices of the coefficients. Then in exactly the same way we
find algebraic functions

™1 = = ^ 1 (™1ϊ ^Οΐ ^ 1 ' · " · Ϊ ^ 2 ^ ) '

λ ; · = μ ^ · ( λ 1 , α 0 , й ) , . . . , α 2 > τ ) 0 = = 2 , 3 , . . . , 2к — 2 ) ,

Substituting these in (4.6) we find that all the equations in (4.6) coming

2k
after the identity Σ α, ζ = aop2fe, and also the f irst two equations,

1=0

are satisfied for any set of coefficients a0, o l f . . . , a2%.
We shall prove that we can always choose

λ 1 = λ 1 ( α 0 , . . . , a 2 k , a 0 , a u ..., a2-^),

such that XJ(Xi, a0, a t a2k) = μ ι (λ ι , a0, ai a2%) and,

moreover, the function Xi = Xt (OQ, a l F . . . , a2%) is algebraic. Then,

substituting Xj = λι(αο, alt . . . , a2%) in the expressions for X* and [ij

we obtain the required set of algebraic functions of the coefficients of

P2k(z)> P^kiz) for which all the equations (4.6) are satisfied. So we

establish Lemma 4.4.

The unknown algebraic function Xj = λι(αο, <xlt . . . . a2fe, a0, a l t · . . , a2^)

can be found if and only if the function X* - ^ depends on Xlf i . e .

5(λ*-μι) „ „

*^ =hU. for any set of OQ, fli, . . · , a2fe, я<э, αΐι · · · , a2k·

We fix the coefficients OQ, o l t . . . . a2fe, a0, a! a2% and we let

Xi tend to infinity together with X^.j. = ̂ i - Xi. We shall prove that
OfQ

then \\ - \it = λί(λι, α0, aif . . . . a2fc)-^i(^i, OQ, Si a^) also
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tends to infinity, and hence we obtain the required relation L φθ.

We define

2 ^
 ( >

 ,
 1}

Prom Lemma 4.1 and the equations (4.2) with s = 2k - 1 we obtain

αΡ-'^λί(l + o(l)) (1 = 0, 1, ..., 2Α —1).

Further, with the help of Lemma 4.2 and the equations (4.4) with
s = 2i - 1, we can express, for each ι from 2 to k - 1, the coefficients
°f P21-1 and also λ 2 ί- ι , X2i in terms of the coefficients of p 2i+i· Taking

i = k - 1, i = fe - 2 i = 2 , in succession, we obtain, in k - 2 steps,
algebraic expressions for all Хг (Ζ = 3, 4 2fe - 2) in terms of the
coefficients of p2fe-i· At each step, f irst ί values of λ2ί-ι are obtained
from an algebraic equation of degree i (see the last equation in (4.4)) in
the known coefficients of p 2 i+i, then one of these values is fixed and X2j
and the coefficients of p 2 i - i a r e determined from (4.4) where s = 2i - 1,
λ = A 2i_ l t λ' = λ 2 ί ·

We note that the values

λ 2 ί + ι , α ^ ι - i ) (9 = 1, 2, . . . , 2 t - l ; i = 2, 3, . . . , A - 2 ; / = 1, 2, . . . , Λ - 2 )

so o b t a i n e d s a t i s f y t h e r e l a t i o n

where С is a constant.
For each Ζ = 2i - 1 and q = 1, 2,

select principal parts Xj, a )

Ζ; ι = 2, 3 fe - 1 we

from Xj, ay) such that 1

= COnst1

If in the procedure for determining λι(1 = з, 4,

cribed above we replace the ay 0 = 1, 2

. 2fe - 1) des.

2fe - 1) by their

corresponding principal parts and keep the rest of the process unaltered,

then instead of X
2
i-!, X

2
i and the coefficients of p

2
i-i, X

2
i-i and X

2
j

and the principal parts of the coefficients ofp
2
i-i (i = fe-l,

k - 2, .... 2) are determined at each step. Also any two distinct values

of X
2
i_! differ from each other by the quantity η . Xf, where η is a non-

zero constant.

This constant can depend only on the values of a0, at a2k which we
have fixed above.
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We write out the expression for a
2

 l
" especially (see (4.4) with

s = 2i - 1):

3=1

3=»

Hence we obtain

2
i=2

Similarly we can obtain

Let us assume that the values of X2y_i, and their principal parts

λ 2,7-1 0' = « - 1. fe - 2 2) have already been determined and find

Ki-i (i = k - 1, k - 2 2). _

We have to show that in the procedure for obtaining λ
2
ί-ι

(i = k - l, fe - 2 2) their values can be chosen such that

УX--1-2^-1^0, (4.8)
3=2 t=2

and then

З ^ . (4.9)
3=2 г=2

We assume that the values of λ 2 ϊ . ι and also of X2i and a^ " have
already been fixed for q = 1, 2, . . . . 2i - 1; i = fe - 1, fe - 2 3.

The values of λ 3 are found from the equation (see (4.4) with s = 3)

2«1\(-1з)'=0. (4.10)
3=0

If this equation has two distinct roots, then at least one of them
satisfies (4.8), consequently (4.9), and Lemma 4.4 has been proved.

— ц(5)

Suppose that the two roots of (4.10) coincide. Then λ
3
 = -|—. We come

back to the process for finding values of λ
2
ί-ί one step earlier and

suppose that the values of λ
2
ί.ι are determined, together with the values

of X
2
£, Otg for q = 1, 2, ..., 2i - l; г = fe - 1, fe - 2, .... 4.

The values of λ
6
 are found from the equation (see (4.4) with s = 5)

2a^2j(-* 5) J ' = 0. (4.11)
3=0
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If this equation has at least two distinct roots, then the sum

λ
3
 + λ

5
 = ψ- + λ

5
 ~ ̂ =h. + λ

5
 = {- (α"» + λ

5
)

can also take two distinct values of which at least one satisfies the

relation (4.8) which is equivalent to the assertion of Lemma 4.4. Conse-

quently, if the lemma is false, then all the roots of (4.11) coincide and

i=2

In a similar fashion we find that if the assertion of the lemma is not

fulfilled, then for each m from two to k - 1 inclusive we have

m

Σ Τ _m — i -(2m+l) m — 1 ,-(2m+3) τ .
2 i
-

1 —
 m

 2
 ~"~Ίίι ^

2
 ~"

 A
2m+i),

i==2

and consequently, for 2 .< I 4. k - 1

ι _ _

2
 α
2Ζ-2> ( — λ

2 Ζ
_!)

3
, (4.12)

j=o

i s a polynomial in X 2 j .i of the form

However, this does not hold for the polynomial (4.12) when

I - k - 1 ̂. 2, since 0^ = λ'. Consequently the assertion of Lemma 4.4

is true, as required.

Let us now take an arbitrary set of natural numbers n
l t
 n

2
, .... n

s
.

We construct a scheme for the simultaneous computation of the polynomials

ΡηΛζ) = Σ αί° г"'"', ai
l)
 4 0, of degrees n

it
 i = 1, 2 s with

г = 0
arbitrary complex coefficients.

We compute the given polynomials of degree 2 by Homer' s method and

polynomials of odd degree by scheme (4.5). We compute the polynomials of

even degrees greater than 2 by schemes (4.6) and (4.7), splitting them up

into pairs so that the number of "difficult pairs" (see the footnote on

p. 130) is minimal. Finally, if an odd number of polynomials of even

degrees greater than 2, is given, then one of them, Ρ η• (ζ) is left without

without a pair, and we compute it by scheme (4.5) putting

PiU^z) = «4
; )
 z

P2k
+i + 0.Ч] . where η,- = 2k + 2, k > 1. Naturally, we

calculate g
2
 = z

2
 once only here. So we obtain the following theorem.

T H E O R E M 4.2. Let n
lt
 n

2
,
 o
.., n

s
, s %, 1, be a finite set of

natural numbers containing r 2's and I + r even numbers, O-$r<lZ + r ^ $ .

Then a scheme can be produced for the simultaneous computation of the set

of polynomials Pn\ (ζ) = Σ α^ ζ"*~ of degrees n{, a
Q

l
 4 0

(i = 1, 2, .... s) and with arbitrary and independent complex coefficients,
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containing N - s + Τ additions and ^ 2 J ~^^
1
 multiplications,

where Τ is the minimal number of "difficult pairs " (see the footnote on
p. 130),

« Г0 if I is even,

i=i [i if I is odd.

Comparing the results of Theorems 4.1 and 4.2, we see that the lower

bounds for the number of operations in schemes for the simultaneous com-

putation of the values of several given polynomials can always be attained

to within Τ additions and from
 S r

 to - - multiplications

2 2

depending on whether I and N + r are even or odd. We shall not concern

ourselves here with methods of improving the schemes further.

Ц. Schemes for the simultaneous computation of polynomials with real

coefficients. In the real case the bounds of Theorem 4.1 can be attained

to within one addition and I + 1 + - multiplications, where I is the

number of polynomials of even degree and s the number of polynomials to

be computed.

We obtain a corresponding scheme, computing all quadratic polynomials

by Homer' s method and the rest by a scheme of the form (3. 2) (see

Theorem 3.1), naturally, however, the values of g
2
 = x

2
 and h

2
 = g

2
 + *

are computed once only for all polynomials in the given set.

There are better schemes for the simultaneous computation of the

values of several polynomials of low degree with real coefficients - a

case, evidently, of the greatest practical interest. In particular, if

all the given polynomials have degrees at most 5, then we can produce a

scheme of computation, suitable for any set of real coefficients, in

which the bounds of Theorem 4.1 for the number of operations are attained

to within approximately Г -~- multiplications, where I is the number

of polynomials of degree 4 in the given set of polynomials. To save space

we omit these schemes.

Received by the editors May 27 1964.
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