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Heapsort is a fundamental algorithm whose precise performance characteristics
have proven difficult to analyze. It is easy to show that the number of keys moved
during the algorithm when sorting a random file of N distinct elements is
N1g N + O(N) in the worst case, and it has long been conjectured that the
average case performance is the same. No specific results on the average case or
even the best case have been found despite the algorithm’s standing as a classic
method that is in widespread use. In this paper, we resolve these questions by
showing that the best case for the number of moves is ~ iN lg N and that the
average number of moves is ~ N Ig N. These results have implications for the
analysis of various modified versions of the algorithm that have been suggested. In
particular, they imply that a well-known variant originally due to Floyd uses an
asymptotically optimal number of comparisons on average, but three-halves that in
the worst case. This essentially completes the analysis of the algorithm, although
there is another quantity that contributes to the leading term of the running time
that requires more intricate arguments, and we have little specific information
about the distribution beyond what is implied by our asymptotic results. © 1993

Academic Press, Inc.

1. INTRODUCTION

Heapsort is a classic sorting method due to Williams [13] and Floyd [6].
It can be used to sort an array in place in O(N log N) steps; its primary
disadvantage is that the inner loop is comparatively long, so that imple-
mentations tend to be about twice as slow as Quicksort, for example.
Although the empirical evidence in support of this conclusion is rather
persuasive, precise analysis has been elusive, and we seek relevant mathe-
matical resuits.
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The method treats an array as a complete tree stored in level order and
is based on maintaining a so-called heap ordering on the array values,
defined as follows: A heap of N keys in an array a(1...N] has aCil
greater than af2i] and al2i + 13 for 1 <i <|N/2|. Equivalently,
ali] is less than ali div 21 for 2 <i{ < N. Program 1 is a Pascal
implementation that builds a heap and sorts the array after the heap is
built, using the common procedure siftdown for both tasks:

ProGgram 1. Heapsort.

procedure siftdown(k: integer);
begin
vi=alkl;
while k<=N div 2 do
begin
ji=k +k;
if j<N then if aljl<alj+1] then j:=j+1;
if v>=aljl then goto 0;
alkl:=aljl; k:=1j;
end;
0: alkl:=v
end;
for k:=N div 2 downto 1 do siftdown(k);
repeat t:=al1]; al1]:=alN]; alNl:=t; N:=N-1;
siftdown(1) until N<=1;

If the subtree rooted at alk3] is heap-ordered except possibly at the root,
s i ftdown heap-orders it by exchanging the root with the larger of its two
children and moving down the tree. The array is heap-ordered in a
“bottom-up” fashion by using s i ftdown, proceeding backwards through
the array. Then, the array is sorted by extracting the largest key: exchang-
ing it with the key in the last position, reducing the size of the heap by
one, and using siftdown to repair the damage. We call this process
“sorting down” the heap. Further information on the implementation and
operation of Heapsort may be found in [8 or 10].

Despite its prominence as a fundamental method for sorting and for
implementing priority queues, specific analytic results about Heapsort are
sparse in the literature. Although the algorithm is simply stated and
implemented, derivation of a precise mathematical description of its
performance seems to be difficult. It is the only sorting algorithm in [8) for
which Knuth is unable to give a precise formula for either the minimum,
maximum, or the average running time. The running time depends primar-
ily on two quantities: the number of “data moves” (the number of times
the statement aLk] := aljJ] is executed in Program 1) and the number
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of “right turns” (the number of times the statement j := j+ 1 is
executed in Program 1). Some researchers work with the number of
comparisons used, which is closely related to the number of data moves, as
mentioned below.

It is easy to establish that in the worst case, s1ftdown needs to travel
to the bottom of the heap on each call, so that the number of data moves
made during the algorithm is not greater than

Y. lla(N/D)] + Y. |lgi]=NIgN+ O(N),

N=zix1 1<i<N

but little precise information about the performance of the algorithm is
available beyond this. Not even the worst case of the number of right turns
is given by Knuth [8, Ex. 5.2.3-30].

But the primary quantities to be analyzed are the numbers of compar-
isons and data moves, and we focus on these in this paper. The distribu-
tion of the number of data moves, assuming all permutations to be equally
likely as input, seems to be extremely flat; for example, experiments
involving generating random heaps of 2!° keys typically give a sample
standard deviation of less than 15. On the basis of such experiments, it is
reasonable to make the conjecture that the distribution for this quantity is
asymptotically flat; that all heaps N lg N + O(N) moves.

Our results in this paper show that this is not quite true and that a
similar, but slightly weaker, statement holds. First, we present a rather
intricate construction that shows this conjecture to be false because the
best case is ~ %N lg N. (Note carefully that each data move involves two
comparisons, so an average case of ~ iN Ig N data moves would be no
violation of the lg N! lower bound for all comparison-based sorting meth-
ods.) This best case bound has been derived independently by
Fleischer, Sinha, and Uhrig [4, 5]. Our second and main result implies that
there are not too many best case heaps because the average number of
data moves is ~ N lg N.

We also present other facts about the distribution of moves that were
learned during the development of these results.

2. CounTING HEAPS

Let f(N) = {the number of heaps of N distinct keys}. Because we
consider only heaps on distinct keys, we will always assume that an N-key
heap contains the integers from 1 to N. Since the root must be N and
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there is no restriction on the subtrees, we must have

sy = (V5 ) resoscsa,

where §; + 5, = N — 1 are the sizes of the subtrees of the root. Dividing
by N! gives

Nt N S! 8!
which telescopes to give the result

N!
{size of the subtree rooted at k} -

f(N) = n

1<k<N

This formulia, derived in a different way, is given in Knuth [8]. The same
argument works for any heap-ordered tree: the number of ways to label
any tree with the integers 1 through N, such that every node is larger than
its two children is N! divided by the product of all the subtree sizes. For
example, the number of heaps on 13 keys is

13!

375333 00

Table 1 gives the exact value of f(N) for small N.

Two facts should be noted from Table 1 and the above discussion. First,
the independence of the subheaps can be used to prove that the bottom-up
heap construction procedure “preserves randomness’: if each of the N!
permutations is equally likely before the construction process, then each of
the f(N) heaps is equally likely after [8, p. 155]. This makes it possible for
Knuth to derive accurate formulae for the average-case performance of
the heap construction process. Unfortunately, the second fact to be noted
is that the sortdown process does not preserve randomness (far from it).
For example, simple numeration says that the sorting procedure cannot

TABLE 1
Distinct Heap Counts

N12345 6 7 8 9 10 11 12 13 14 15

fIN) 11 2 3 8 20 80 210 896 3360 19200 79200 506880 2745600 21964800
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preserve randomness because successive elements in the table do not, in
general, divide. If each of the three heaps on four keys is equally likely
before the first sorting step, how could each of the two heaps on three
keys be equally likely afterwards? One would have to be twice as likely as
the other. Enumeration of all heaps for small values of N, as described in
the next section, also destroys other simple conjectures: for example, the
heaps on seven elements do not appear with equal frequency when the
heaps on 15 elements are sorted.

It is a straightforward calculation to continue from the above formula to
derive an asymptotic expression that shows how the number of heaps
grows with N:

LemMMA. The number of different heaps which can be formed from

N = 2" — 1 distinct keys is
1
1+0(~)),
N

Y : ! 2 0.440539
= — In[| ——| = 0. +.
A Tl [ Ly

4N + 1)!(3;)N+1

where

Proof. Consider a heap on N = 2" — 1 keys. For each &k, 1 <k < n,
there are 2" % subtrees of size 2¥ — 1 rooted at keys of the heap. The
number of distinct heaps on N nodes is thus

N!
1—[(21( _ 1)Zn—k
k=1
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N1 125
ey Te-np”
k=1 k=1

—k

Nt

n 2k
—— n—k I,
S(ERZhn— K32k em(k{:] 2 ln( 2% ] ))

i

n

k
= N1- 2727 Hntz, exp(Z" Y —I-E ln(Tz——))
Rl i L

N+ 1
=N!--——4-ﬁ+—1—'e(N R (1+0(—N))



THE ANALYSIS OF HEAPSORT 81

since

1 1
exp((N+ ny 7ln(l + F 1)

k>n

< exp((N +1) Y

k>n

ATVAEEY

<exp((N+l)(%)n)=l+O %) )

Using Stirling’s approximation, this means that

0

FN) = e )N

n

N
3.9N3/2(£V—) .
7

For example, for N = 15, this approximation gives 2 X 107, in agreement
with the table above, and it says that there are more than 7 X 10?2 heaps
of size 31.

3. GENERATING HEeaps AND ExAcT RESULTS FOR SmaLL N

Given a heap of size N — 1, it is convenient to consider working
backwards to generate all heaps of size N that yield that heap after one
siftdown operation. There are exactlyalN div 21 such heaps, which
can be generated by, for each alk1] less than or equal to alN div 21,
performing the “pulldown” operation given in Program 2:

PrograMm 2. Pulling a new key down into a heap.

procedure pulldown(k: integer);
begin
alNl:=alk];
while k<>1 do
begin j:=k div 2; alkl:=aljl; k:=j end
al1l:=N;
end;

Figure 1 shows the result of performing pul Ldown (7) in a heap on 17
keys. Since aL18 div 21 > al71 (key value 8 is greater than key value
6), al71 can be “pulled down” to position aL181. Replacing al7] by
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FiG. 1. pulldown(7) followed by al1]1 := al[181, siftdown(1).

al3]1 and aC3] by aL13], and assigning aL1] := 18, completes the
expansion of the original heap to a heap on 18 keys. Performing al1] :=
al181, siftdown(1) restores the original heap. Since one call to
siftdown reverses the effects of one call to pultdown, siftdown is,
in a sense, the inverse of pul ldown.

Sometimes when performing a pul ldown operation it is clearer to
refer to the key being “pulled down” by its value rather than its index.
Figure 1 thus shows the result of pulling down 6. When the procedure
described by Program 2 is used, we say that aCk] is pulled down by
alN div 21;in the example, 6 is pulled down 8.

The pul ldown procedure can be used as the basis for an efficient
program to generate all heaps: for each heap of size N — 1, generate
alN div 27 heaps of size N by applying put L down appropriately.

Figure 2 shows how the heaps of size 5 are generated. In this “tree of
heaps,” the pul Ldown procedure can be used to move down, and the

e
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Fic. 2. Generating heaps.
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TABLE 2
Cost sequences (N = 5)

Pulldown sequence 1234 1232 1224 1223 1222 1124 1123 1122

Cost sequence 0112 0111 0112 0111 0111 0012 0011 0011
cost 4 3 4 3 3 3 2 2

siftdown procedure to move up,so only the heap and a small amount of
state information about which pul Ldowns have been done need be kept
during the generation procedure. This “bottom-up” generation method
seems more convenient than a “top-down’” method corresponding to the
counting formula in the previous section. (It is interesting to contemplate
whether there might be some combinatorial identity implied by that
counting method and this generation method.)

Each heap of size N is built by starting with the heap of size 1 and
performing N — 1 pul Ldown operations. We associate a unique pull-down
sequence with each heap: the sequence of positions k from which keys are
pulled down. The pull-down sequences for the heaps of size 5 are given in
the first line in Table 2. Each pull-down sequence has an associated cost
sequence, where each key i in the sequence is replaced by |lg i]. Then the
cost (number of moves) of sorting down the heap is given by summing the
elements in the cost sequence. The cost sequences and costs for the heaps
of size 5 (in the same order as at the bottom of Fig. 2) are given in Table 2.
These sequences may be viewed as the costs of constructing each heap
(using the pull-down sequences given) or as the cost of sorting-down the
heap by repeated calls to siftdown (with the pull-down sequence de-
scribing where each key ends up in the sorting down process).

It is a straightforward matter to keep track of cost sequences and costs
as heaps are generated. The full distribution of the number of moves
required to sort-down the more than 25 million heaps of 15 keys or fewer,
computed using this method, is given in the Appendix. The average-case
costs computed from this table are given in Table 3. The average seems to
drift towards the worst case, but the numbers are too small to make
reasonable conjectures.

TABLE 3
Average Sort-Down Costs

N 4 5 6 7 8 9 10 11 12 13 14 15

Average cost 1.67 300 440 595 8.13 1031 1262 1497 1743 1991 2244 2498
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TABLE 4
Best-Case Costs

N 4567891011 1213 14 15 16 17 18 19 20 21 22 23 24 25 26

Bestcase 1 234 6 7 9 11 12 14 16 17 20 22 24 26 29 31 33 35 37 39 <4l

This heap generation procedure naturally converts to a backtracking
procedure to search for the best case. We simply rearrange the order of
doing pul Ldown, so that the best is done first, and maintain a cutoff to
not generate heaps which cannot beat the best generated so far. This
substantially reduces the number of heaps to be examined, although not as
much as one might hope: for N = 25 hundreds of billions of heaps still
pass the cutoff. Table 4 shows the cost of (number of moves required to
sort down) the best heaps for N < 26. On the one hand, 26 is a danger-
ously small number from which to draw conclusions; on the other hand,
the fact that this function grows only by 2 as N increases by 1 from 16 to
25 (except for 19) lends credence to the conjecture that the coefficient of
N lg N in the best case is not 1, but 3.

Furthermore, a careful examination of how a known best-case heap
operates gives some intuition on how to construct larger best-case heaps.
Figure 3 shows the sortdown process for a best heap of size 24; the cost
sequence for this heap is 00111121222123123312231 for a total cost of 37.
Studying this example gives some insight into how a low cost might be
achieved over several pulldowns by alternating groups of short paths with
groups of long paths, for an average cost of about half the heap height.
Specifically, consider the six pulldowns that grow the heap from 16 to 22.
Three “long” pulldowns (of 7, 4, and 3) ensure that the keys involved in
the next few pulldowns are among the largest in the heap, in particular the
keys high up on the other side of the root (15, 10, and 8). In the next
section we show how to generalize this to construct heaps of N nodes for
which the average cost of a siftdown is %lg N for any large N.

4, TigHT AsymproTic BOUNDS ON THE BEST CASE

Heap construction is linear, so to study the best case of Heapsort, we
need only consider the cost of sorting-down a heap. If equal keys are
allowed, the best case is clearly linear [3]; consider the case of a heap with
all keys equal. For distinct keys (or equivalently, a permutation) the
situation is far less clear. Do all heaps require asymptotically the same
number of moves as the worst case for sorting down? If not, are there



THE ANALYSIS OF HEAPSORT

Fic. 3. A best-case heap.
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heaps which can be sorted down in linear time? In this section, we settle
these questions by showing that the best case of the number of moves
taken by Heapsort is ~ 1N Ig N.

First, we consider the lower bound. This is developed by observing what
must happen to the largest keys as the heap is sorted down. This argument
was independently developed and presented by Wegener [11]. We have:

THeOREM 1. Heapsort requires at least N lg N — O(N) data moves
for any heap composed of distinct keys.

Proof. Given a heap on N = 2" — 1 keys, consider the cost of the first
half of the sort-down process, during which the largest 277! keys are
removed. Initially, these keys form a heap-ordered subtree of the heap.
Number the levels of the heap from 1 to n, starting at the root. Then any
large key in levels 1 to n — 1 must work its way to the root, one swap at a
time, until it becomes the largest key in the heap and is removed. It
follows that the number of data movements required in the first half of the
sort-down process is at least the internal path length of the subtree
composed of the largest 2"~ ! keys, excluding those at level n.

At most 2”2 large keys can be at level n, leaving at least 272 large
keys in the top n — 1 levels. The internal path length of the subtree
formed by the large keys in the top n — 1 levels is thus at least that of the
subtree formed by the top 2"~ 2 keys of the heap. The subtree formed by
these top 2”72 keys has an average internal path length greater than
n — 3 providing a lower bound of 2" 2-(n —3)+2""2-0)/2"" ! >
n/2 — 2 on the average cost of the first 2” ! siftdown operations.

The same argument holds each time the size of the heap is halved and
can easily be extended to handle all values of N. O

We develop a matching upper bound by constructing a heap which has
the “alternating’” flavor of the heap of size 24 shown in the previous
section. The construction is more easily seen by working backwards (using
pul Ldown): the goal is to build a heap this way using only ~ INIgN
moves. This construction maintains a heap of the form depicted in Fig. 4,
starting with a “seed” heap on O(N/lg N) keys and growing to a heap on
N =2" — 1 keys. We alternately label 4, and B, the subheaps whose
roots lie in a certain fixed level of the heap being constructed. The A; and
B; will be the source of keys to pull down from the bottom of the heap. To
provide keys to pull down from the top of the heap, we mark off the top
few layers of the left and right halves of the heap and call them D and C.
These subheaps all grow during the construction process, and D and C
each will always contain at least as many keys as any of the A4; or B,.

Our construction is based on imposing and maintaining a set of con-
straints on the distribution of values in the heap under construction
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n-v+2a

Fi1G. 4. Structure for best-case heap construction.

beyond the defining requirement that no key be larger than its parent.
Specifically, we initially require that for ail i, every key in A, be larger
than any key in B;, and that every key in C be larger than any key of A4,
or B,. Starting with any heap satisfying these constraints, we can build a
larger one that still satisfies the constraints using only pulldown opera-
tions, as follows: We first pull down the keys of B, by keys of 4,. As we
perform these pulldowns, new keys flow from the root of the heap into B,.
This guarantees that all keys of B, are new to the heap (except those that
were on the path from the root of the heap to the root of B,); these new
keys are larger than the keys in C so we pull down the keys in C by the
keys of B,. Working across the bottom of the heap, we alternate sets of
pulldowns using the A’s to pulldown the B’s at the bottom with sets of
pulldowns using the B’s to pulldown C at the top (or D when B, is on the
right side of the heap). This process increases the height of the heap by
one.

Ideally, we would hope that this process, made possible by the imposed
constraints, would also maintain the constraints, so that it could be
iterated to form an arbitrarily large heap. Actually, the process leaves a
heap with similar constraints, but with keys in B’s larger than keys in A’s.
But we can define a similar process involving B’s pulling down A4’s that
brings us back to a heap satisfying the original constraints, but with height
increased by two. This “two-phase” process can be iterated to form an
arbitrarily large heap.

The whole construction process revolves around alternating pulldowns
from the bottom (A’s pulling down B’s or B’s pulling down A’s) with
pulldowns from the top (B’s or A’s pulling down C’s or D’s) which gives
an average pulldown length of about half the heap height. While concep-
tually straightforward, the full proof below is technically rather complex
because of a number of special situations that arise during the process.
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Fic. 5. Numerical illustration of the construction.

Figure 5 provides a numerical illustration of the construction that is
intended to illustrate some of the technical difficulties encountered when
proving the correctness of the construction. This example is somewhat
similar to the process already noted in Fig. 3. After pulling down 4, the
keys of B, (3, 1, and 2) are pulled down into A4,. After pulling down 15, all
keys in the top two levels of B, have entered the heap since the first
frame. The largest keys of C (14, 11, and 12) can thus be pulled down to
add a new row to B,. First, note that in the illustration, C overlaps what
should be the roots of 4, and B,: in the actual construction, this would
disturb 4, and B, and cannot be permitted; the illustration is shown as it
is only because a heap without overlap would be too large to draw.
Second, note that there are not quite enough keys in B, to complete the
new bottom row of A4, so an initial pulldown of 4 from A4, was required;
such initial pulldowns must be specifically accounted for in our construc-
tion. Third, as was noted earlier, we cannot always count on the keys
entering B, to be larger than those in C since some of them come from
the path from the root of the heap to the root of B|; any such keys should
be pulled down themselves before beginning to pull down keys of C (in
Fig. 5 we pulldown 15); in this instance this was actually not required, but
if the path from the root of the heap to the root of B, were longer, it is
easy to see how B, could contain keys that are smaller than those in C.
Fourth, note that in the final frame of Fig. 5, the key 13 of A, is larger
than a few keys of B, due to the initial pulldown of 4; when future passes
pull down keys of some B; by A,, there will be a limited number of
exceptions to the rule that keys of A, are larger than those of B; which
must be accounted for in the actual construction.
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TABLE 5
Notation for Best-Case Construction

Notation Upper bound Quantity represented

n=[lgN] Of(log N) Height of the finished heap

v=23lgnl OQoglog N) Height of A4, B, C, and D subheaps (within a
constant factor)

1=2""%-1 O(N/log N) Number of A4 and B subheaps (depends only
on N)

a €[0,v/2) Ooglog N) Index tracking the “phases” used to build the
heap

£ =2na O(log N loglog N) Cumulative count of keys violating the primary
invariants

Let N = 2" — 1 be the number of keys in the heap to be constructed.
Table 5 is a list of various notations that play a role in the construction.
Although these quantities are functions of N (and each other, in some
cases), we abbreviate them all with single letters for brevity. Further
details on these quantities and motivation for the specific values assigned
are given below; they are collected and summarized here for convenience
in referring to their values and meanings. As depicted in Fig. 4, the
construction starts with a heap of height » — v and with the A, and B, of
height 2v. That is, A, is the subheap with root al2"~% + 2i — 21, and B,
is the subheap with root al2"~% + 2i — 11. As the construction pro-
gresses, the number of A and B heaps will always be precisely { = 2731
(their roots will remain fixed), and by the end of the construction, these
subheaps will be of height 3v and the main heap of height .

The heap will grow from the initial seed to the final heap in a series of
v/2 passes, each consisting of two phases. The AB phase adds a level to
the heap by pulling down the keys of the B, into A; as demonstrated in
Fig. 5. This leaves the keys of the B, larger than those of A, ;, permitting
Phase BA to add a level to the heap by pulling down the keys of A4, into
B,. This restores the original condition that the keys of A, are larger than
those of B;, so a new pass can begin.

Referring to Fig. 4, note that the C and D subheaps grow in size with
the A’s and B’s (they are one level higher at the beginning of the first part
of each phase in order to accommaodate the second part, after the A’s and
B’s have already grown by one level). To ensure that C and D will never
overlap the A4; and B;, as mentioned above, we choose N large enough so
that 6v < n.

To describe relationships among sets of keys in the heap structure given
in Fig. 4, we adopt the following notational conventions. First, for sets §
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Cost Bound
1. Build seed heap from the integers from 1 to 2"~* — 1.
2. Add v levels to the heap in /2 passes, each consisting of two phases, as follows:
for a from 0 10 »/2 -1 do
Phase AB:
(i) for i from 1 to £/2 do
(a) Pull down the ¢ + 1 smallest keys in A,. n(2na+1)
(b) Pull down all but the largest ¢ keys in B;. n2Av+e)
(c) Pull down each of the smallest ¢ + n keys io B;. n(2na + n)
(d) Pull down the largest 22(**+@) — ¢ — p keys in C. (2(v + a) + 1)2%v+a)
{ii) for i from £/2+ 110 £ do as in (i), replacing C with D,
Phase BA:
(i) Pull down the smallest key in A;, 22(*+)*! times. n22(»+0)+1
(ii) for i from 110 £/2 — 1 do
(a) Pull down the smallest ¢ + n + 1 keys in B;. n(2na+n+1)
(b) Pull down all but the largest ¢ + n keys in A.4q. n22v+a)tl
(c) Pull down cach of the smallest ¢ + 2n keys in A, ;. n(2na + 2n)
{d) Pull down the largest 2X*+2)+1 _ ¢ _ 2 keys in C. (2(v + @) + 1)23v+a)!
(tii) for 1 from £/2 to £ — 1 do as io (ii), replacing C with D.
(v}
(@) Pull down the smallest ¢ + n + 1 keys in By. n(2na+n+1)
(b) Pull down the smallest 22(*+2)+) _ ¢ _ n _ 1 keys of A,. n22(¥+a)41

FiG. 6. Best-case heap construction.

and 7T, take S > T to mean that every key of S is greater than any key of
T. Second, given a subheap H and a positive integer x, we define L(H, x)
(the large keys) to be all but the smallest x keys of H, and S(H, x) (the
small keys) to be all but the largest x keys of H. Thus, if we wished to say
that all but one of the keys in A, are smaller than any key in B, (as is the
case in the final frame of Fig. 5), we simply write S(A4,,1) < B,.

THEOREM 2. The best case of Heapsort requires no more than INIgN +
O(N loglog N) data moves.

Proof. Figure 6 gives the steps that build a best-case heap from a seed
heap of the type shown in Fig. 4. Also given in Fig. 6 are upper bounds on
the number of data moves made by each step. This uses the notation given
above, and the reader may find it convenient to refer to Fig. 4 and Table
5. As mentioned above, take N large enough so that 6» < n to ensure that
the structure does not degenerate.

Figure 7 gives the “pass invariants” that formalize the structure shown
in Fig. 4. They are required to hold in the seed heap and at the end of

() L(Ai,€) > S(Bi,¢) foralli, 1<i<¢,
(ii) L(C, 22+ — 1+ ¢4 n) > Ay,
(iii) L(C,2**+*) ~ 14 ¢+ n) > B,.

Fic. 7. Pass invariants for best-case construction.
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each pass. To prove the correctness of the construction sketched above
and made explicit in Fig. 6 we must prove three things. First, we must
show that it is possible to create a seed heap satisfying the pass invariants
with @ = 0. Second, we must show that a single pass of the construction is
both permitted by and preserves the pass invariants. Third, we must sum
the cost bounds given in Fig. 6 to show that the number of data moves is
~ 1N 1g N as claimed. Together these parts form a proof by induction
that the construction we have described is possible and satisfies the
required bound on the number of data moves. The most complex part of
the proof is the correctness—many readers may wish to skip to the section
on summing the cost bounds below.

I. Constructing the Seed Heap

Start with 2" % — 1 keys—the integers from one to 2"~ — 1. Fill the B,
with the smallest /(22 — 1) keys and arrange the keys in each B; in heap
order. Fill the A; with the next block of 2% — 1) keys, again in heap
order. Since the keys in the A, are larger than those in the B,, pass
invariant (i) is satisfied. The largest 2/ — 1 keys remain and should be
placed in heap order in the top n — 3v levels of the heap. Since C is
contained in these top levels, it follows that pass invariants (ii) and (iii) are
satisfied.

1I. Correctness of the Inductive Step

In this section we show that if we start with a heap that satisfies the pass
invariants and execute a pass of the construction as described in Fig. 6, the
resulting heap also satisfies the pass invariants and contains two more
levels than at the beginning of the pass. We begin by showing, step by step,
that Phase AB of a pass can be executed on a heap that satisfies the pass
invariants.

Correctness Proof for Phase AB. (i) The purpose of this loop is to add
keys to the bottom of the left half of the heap. At the beginning of the ith
iteration we require L(A;, &) > S(B,¢), L(C,2%**™ — 1 + ¢ + n) >
A;,., and L(C,2%**® — 1 + ¢ + n) > B,,,. These last two inequalities
are not needed to execute Phase AB, but will be used to establish
conditions analagous to the pass invariants prior to execution of Phase
BA. All three inequalities hold at the start of the first iteration by the pass
invariants.

(a) We begin level 2(v + a) + 1 of A, by pulling down the ¢ + 1
smallest keys in A4;. Every key at level 2(v + a) of A, is now greater than
any key of S(B,, ¢). This follows from three observations. First, we started
with L(A;, &) > S(B;, €). Second, all of the ¢ keys of A; which were



92 SCHAFFER AND SEDGEWICK

smaller than some key of S(B;, £) have been pulled to level 2(v + a) + 1.
Third, any key that enters A, in this step is greater than all keys of the
original L(A,;, ) since these were once among its descendants.

(b) Since every key of S(B,,¢) is smaller than any key at level
2(v + a) of A,, we can pull down 2%¥*® — 1 — ¢ keys of B; to complete
level 2(v + a) + 1 of A,.

(c) Pulling down the smallest £ + n keys in B; ensures that all keys at
or above level 2(v + a) of B, are new to the heap since the beginning of
step (a). This results from pulling down the ¢ keys originally in B; that
failed to be pulled down in step (b) as well as the fewer than n keys that
had been along the path from the root of the heap to the root of B, at the
beginning of step (b).

(d) Since all keys at or above level 2(v + «) of B; are new to the heap
since the beginning of step (a) and since C has not been touched since
before step (a), it follows that all keys at or above level 2(v + a) of B; are
larger than any key of C. We can thus pull down the largest 22"+ — ¢ — n
keys in C to complete level 2(v + a) + 1 of B,. In the process, the largest
2%v+a) _ ¢ — p keys in C are replaced with keys that are new to the heap.
These new keys are larger than any key in A4,,, or B, ,. Note that A4, ,,
A; .2, B, and B;,, have not been touched since the beginning of Phase
AB. This leaves L(C,22*** — 1 + ¢ + n) > A,,,, L(C,2%"¥® — 1 + ¢
+n) > B,,,, and L(A,,,,&) > S(B,,,¢) for the next ((i + Dth) itera-
tion of the loop, as required.

(ii) This loop adds keys to the bottom of the right side of the heap
just as (i) added them to the left. Note that in step (i), pulldowns from the
B; caused new keys to stream down through D; this flushed the old keys
from D and left it filled with keys that are new to the heap since the
beginning of the phase. Since none of the A4, or B, for i > [/2 have been
touched since the beginning of the phase we know that L(A,, £) > S(B;, ¢),
L(D,2** — 1+ ¢e+n)>A,,., and L(D,22% — 1 4+ ¢ +n) >
B, 5., hold. (ii) thus proceeds exactly as (i) with C replaced by D.

So far we have shown that it is possible to use Phase AB of the
construction to add a level to a heap satisfying the pass invariants. We now
show that at the end of Phase AB, we are left with conditions similar to
the pass invariants. These conditions permit Phase BA to add another
level to the heap and restore the pass invariants by pulling down keys of
the A, , by keys of B,. Fix i, 1 <i < [. We wish to show L(B,, ¢ + n) >
S(A;,, e +n).

Of the keys that are in A, at the end of Phase AB, fewer than ¢ + n
were not in A4, , or B, , at the beginning of the phase. This follows from
the observation that A, contains all 22**®) — 1 keys that it contained at
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the beginning of the phase and all but ¢ of the keys that B,,, contained
at the beginning of the phase.

Now consider the origins of the keys in B;; 2%"*® — ¢ — n keys were
pulled down from C (or D); by the inequalities that held prior to the ith
iteration of loop (i) (or the (i — I/2)th iteration of loop (ii)), all of these
keys are larger than any that were in A, or B, at the beginning of the
phase. Even larger are the 2%*** — 1 keys that were in the top 2(v + a)
levels of B, before we began pulling down the keys from C (or D).
Together these constitute at least 2%**®*! — ¢ — p — 1 keys in B, that
are larger than any key that was in 4, , or B,,, at the beginning of the
phase. It follows that L(B, ¢ + n) > S(A,,, & + n). Similar reasoning
shows that L(B;, e + n) > S(A4,,¢ + n).

Finally, note that 4; and B, were undisturbed during step (ii) while C
was flushed and refilled with keys that had not been in the heap prior to
Phase AB; this leaves the keys of C larger than those in 4, and B,. We
thus have the following situation, analogous to the pass invariants, as we
begin Phase BA:

(i) L(B;,e + n) > 8(A,,,e + n)for i <.
(i) L(B,, e + n) > §(A,, £ + n).
Gii) L(C,e + 2n — 1) > A,
(iv) L(C,e + 2n — 1) > B,.

We now show, step by step, that these conditions suffice to ensure that
Phase BA can add a level to the heap.

Correctness Proof for Phase BA. (i) We add level 2(v + ) + 2 to A,
by pulling down a key from within A4, since there is no B, into which to
pull down the keys of A,.

(ii) This loop adds level 2(v + a) + 2 to all 4; and B, on the left half
of the heap with the sole exception of B, ,,. The steps of this loop serve
the same purposes and can be executed for the same reasons, as the
corresponding steps of loop (i) of Phase AB. By the reasoning used before,
the inequalities L(B,, ¢ + n) > S(A,; e +n), L(C,e + 2n ~ 1) > A4, ,,
and L(C,e + 2n — 1) > B, , hold at the beginning of the ith iteration of
this loop.

(iii) This loop acts in the same way as (ii), adding level 2(v + a) + 2
to all 4, and B; on the right side of the heap with the exception of B,.

(iv) This step serves the dual purpose of filling in level 2(v + a) + 2
of B, and of purging the small keys from A, that would have been
removed in step (i) if there had been a place to put them.
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(a) Pulling down the smallest ¢ + n + 1 keys in B, has the same
effect as Phase BA, step (iiXa); every key at level 2(v + a) + 1 of B, is
now greater than all but at most ¢ + n keys that were in A4, prior to the
beginning of Phase BA.

(b) We complete level 2(v + a) + 2 of B, by pulling down the small-
est 22+l 1 — ¢ — n keys of A4,.

We have now shown that a complete pass of the construction adds two
levels to a heap satisfying the pass invariants given in Fig. 7. It remains to
show that the pass invariants have been restored at the end of the pass so
that the process may be iterated.

First, for i > 1 and « unincremented, L(A;, & + 2n) > S(B;, ¢ + 2n)
holds at the end of Phase BA by the same reasoning used to establish the
analogous result for B;_, and A, at the end of Phase AB; as before, the
keys in S(B;,e + 2n) were in B, and A4,,, at the beginning of the phase
while those in L(A;, ¢ + 2n) are either new to the heap or come from C
or D, whose keys are larger than those in S(B, ¢ + 2n).

Now consider the special case of i = 1. As above, the keys in S(B, ¢ +
2n) at the end of Phase BA were in B, and A, at the beginning of the
phase. In A,, on the other hand, with the exception of the keys that were
between the root of the heap and the root of A4, at the beginning of Phase
BA and the smallest £ + n keys not pulled down in step (iv), a total of
fewer than € + 2n keys, every key in A, is new to the heap since the
beginning of the phase. It follows that L(A,e + 2n) > S(B,, & + 2n), so
part (i) of the pass invariants holds for all i.

Parts (i1) and (iii) of the pass invariants continue to hold by the
reasoning used before, that since the beginning of Phase BA, every key of
C has been changed while 4, and B, have remained untouched. Since
the pass invariants hold when we increment a, we can iterate the con-
struction a total of v /2 times to create a heap on N nodes.

III. Summing the Cost Bounds

We now compute an upper bound on the number of key moves required
to complete the construction. We proceed by summing the bounds given in
Fig. 6 on the number of moves performed in individual steps.

First, consider all the pulldowns that are included for the purpose of
putting large keys in a path to the root (those involving about &£ keys). This
includes steps AB(iXa), AB(iXc), AB(iiXa), AB(iiXc), BA(iiXa), BA(iiXc),
BA(iiXa), BA(iiXc), BA(ivKa). The cost bound for each of these steps
during pass a is less than n?(2a + 2) so the total work for all of these
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steps during the whole construction process is bounded above by

2n—3v+1 Z n2(2a + 2) = 0(n22n—3vV2)
O<a<v/2

3

n?2" log? n
n

= O(N).

Most of the work in the construction process involves using the A,
subheaps to pull down the B, subheaps in Phase AB and vice versa in
Phase BA. This includes steps AB(iXb), AB(iiXb), BA(iiXb), BAC(iiiXb),
and BA(ivXb). The total work for all of these steps is bounded above by:

2n-—3v—l Z n22(u+a) + 2n—3v—1 Z n22(v+a)+l

O<a<v/2 O<a<v/2
- 2n—3v—1n22u( Z 22a 4 E 22a+1)
O<a<v/2 O<a<v/2
= pon-v-l Z 2e
O<a<v
— n2n—l _ nzn—v—l

INIgN + O(N).

Roughly, this accounts for about half of the pulldowns during the con-
struction process, down at the bottom of the heap.

The other half of the pulldowns are those involving C and D, high up in
the heap. The total work performed in steps AB(iXd), ABGiXd), BA(iiXd),
and BAC(iiiXd) is bounded by

2n—3v z (2(V + a) + 1)22(v+a)+| < 2n—3v3V22v Z 22a+l
O<a<p/2 O<a<v/2
< 3p277V2Y
= O(N loglog N)

and the total work performed in BA() is bounded above by

Y p¥vrerl o M g2 < un2¥ = O(N).
O<a<v/2 O<a<v/2

So far we have counted the costs of the v/2 construction passes, or
equivalently, the cost of sorting down the final heap to the seed heap of
height n — v. To this we must add the cost of sorting down the seed heap.
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As noted in Section 1, this number is bounded above by

n n

n
n—v)2""+0(2"7") < + O(N) <
2% n

+ O(N) = O(N).

We conclude that the total number of moves required to sort down the
constructed heap is 3N Ig N + O(N loglog N) as desired. O

5. THE AVERAGE CASE

Is the coefficient of N lg N in the expression for the average number of
moves required to sort down a random heap of N keys 1, or not? The
following result indicates that perhaps it is.

LEMMA. After the random heap is built, the average cost of the next
siftdown operation of Heapsort is between |Ig N| and |lg N| — 1.

Proof. Specifically, this refers to the number of data moves made when
siftdown (1) is called for the first time in the last line of Program 1.

Consider the correspondence between each heap of size N — 1 and
heaps of size N which “sort-down” to it implied by pul Ldown. Given a
heap A4 with N — 1 nodes, find the key less than alN div 23 that is
closest to the root. This key is at the root of a complete subheap of keys all
less than alN div 21; the average level of these keys is between the
bottom and one up from the bottom. The result follows from iterating this
process until all nodes less than alN div 2] have been considered. O

(This quantity was also studied by Doberkat [2].) This proof does not
work beyond one step of the Heapsort algorithm, because after one
sort-down we no longer have the property that all heaps are equally likely.
Carlsson has analyzed the average case of Heapsort under the assumption
that succeeding sortdowns are not expected to be any worse than the first
one [1]. This leads to stronger results than those presented below, but rests
upon an unproved assumption. We obtain rigorous results by observing
that almost all heaps have the property that nearly all keys sort down to
the bottom. We can thus prove our main result by a surprisingly short
counting argument.

THEOREM 3. The average number of data moves required to Heapsort a
random permutation of N distinct keys is ~ N Ig N.

Proof. The cost of constructing the heap is ®(N) and we will complete
the proof by establishing that at least N Ig N — N Iglg N — 4N moves are
required for the sort-down process.
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We derive an upper bound on the number of heaps that use a small
number of moves, using the cost and pull-down sequences defined in
Section 3. Consider a cost sequence L = [,l, --- I. The total number of
distinct corresponding pull-down sequences is bounded above by

211 . 212 « e e« 21N i 2()::[1).

Recall that 3,1, is precisely the sort-down cost for all heaps built using any
of these pull-down sequences. Since the root cannot be pulled down, there
are at most lg N values possible for each [, so there are fewer than
(Ig N)V possible values for L. Thus the number of distinct pulldown
sequences that require exactly M data movements is bounded above by
(Ig N)N2M_ Summing this bound over the values smaller than M, it follows
that there are at most (Ig N)¥2* heaps requiring fewer than M data
movements to sort.

Set M = N(lg N — 1glg N — 4). From the preceding paragraph, the
number of heaps that require fewer than M data movements to sort is
bounded above by (N/16)". The number of data movements required by
Heapsort in the average case is thus bounded below by

(f(v) - vy )m - (N/16)Y
7(N) ~MENTEE

where f(N) is the number of heaps on N keys. The theorem will be
proved if we can show that f(N) exceeds (N/16)" by an exponential
factor. The lemma in Section 2 implies this for N of the form 2" — 1, and
the proof given there can be modified to give the result for general N.
Alternatively, Munro has pointed out that such a bound results from the
observation that at most 2N key comparisons are made in building a heap
from a permutation using the bottom-up process in Program 1, from which
it follows that f(N) > N!/22N > (N/4¢)™, which is exponentially greater
than (N/16)", so the theorem is proved. If N is of the form 2" — 1, the
constant 4 in this proof can be replaced by, in the notation of Section 2,
any constant larger than Ig(4e! %) = 2.80713. O

(g N —lgig N — 4),

6. CONCLUDING REMARKS

As mentioned above, if only comparisons are counted, Heapsort seems
to be relatively inefficient because, during the siftdown operation, two
comparisons are used at each step, one to determine the larger of the two
children of the current node, the other to determine whether the current
node is larger than both its children (so the loop should be exited). Floyd
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(see [8]) suggested that comparisons could be saved by eliminating the
latter type (so the loop terminates at some point of the bottom of the
heap), then moving up the heap, using a procedure like pul Ldown, until
the proper place for the key being sifted down is found. Most of the time,
only a few steps back up are required.

The average-case results of the previous section show that Floyd’s
method is asymptotically optimal on the average, but the best-case results
for Heapsort of Section 4 translate into worst-case results for this variant.
Thus, Floyd’s method requires ~ %N Ig N comparisons in the worst case,
not the optimal N Ig N + O(N) that might have been hoped for. Gonnet
and Munro [7] have shown that ~ N lg N can be achieved, at the expense
of a more intricate algorithm, by moving back up the heap with a careful
binary search instead of the linear search of Floyd’s method. Further
results in this direction have been obtained by Wegener [12].

It is possible to develop a construction similar to the one given in
Section 4 to count the number of executions of the statement j:=j + 1 in
Program 1, the other quantity that must be analyzed to determine the
leading coefficient of the running time of Heapsort. The coefficient of
N Ig N for this quantity turns out to be 1 in the best case and 2 in the
worst case [9], and these bounds are achieved in heaps having asymptoti-
cally the best and worst case numbers of data moves. It also can be shown
that this quantity is ~ %N lg N in the average case, using an argument
similar to the proof of Theorem 3 of [9]. This question is not of as much
practical interest as knowing the number of data moves because this cost is
typically on the order of one-tenth the total cost, but these results allow
computation of the coefficient of the leading term of the running time of
Heapsort in the best, worst, and average cases for typical implementations,
thus solving open problems left by Knuth.

Heapsort is prototypical of algorithms which are designed to achieve
good worst-case performance but for which one would also like to know
average-case performance. Few such algorithms “preserve randomness”
and are thus very difficult to analyze using standard probabilistic tech-
niques. But the simplicity of the counting argument given in this paper for
the average case of Heapsort suggests that it is worthwhile to consider
applying such techniques to the problem of determining average-case
performance of other important algorithms with near-optimal worst-case
performance.

APPENDIX

The full distribution of sorting-down costs for Heapsort for 5 < N < 15,
computed using the method described at the beginning of Section 3, is
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TABLE 6
Full Distribution of Sorting-Down Costs

56 7 8 9 10 11 12 13 14 15
2 2
3 4 3
4 2 8 5
s 7 7
6 2 31 6
7 19 46 2
8 4 86 32
9 59 163 8
10 13 314 97
11 270 462 46
12 102 975 465 5
13 13 1051 1988 128
14 594 4426 1142 56
15 159 5676 5142 799
16 14 4322 13336 5312 171
17 1866 21130 21664 2481 10
18 387 20865 58776 16843 858
19 24 12552 107700 71465 11868
20 4230 132629 209573 82046
21 639 107582 436963 360027
2 22 54769 645556 1111286
23 15665 662679 2516164
24 1898 455735 4214038
25 30 195602 5165140
26 44837 4525046
27 3610 2719507
28 85 1035933
29 209319
30 13193
31 365

99

given in Table 6. Although few simply expressed relationships among these
numbers are evident, the underlying distribution seems to be rather stable.
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